DOMINATION THEOREMS IN NON-COMMUTATIVE C*-ALGEBRAS

PRZEMYSŁAW KAJETANOWICZ

Let A be a Banach algebra with unit e. If u, v_1, \ldots, v_n are elements of A then u is said to be dominated by v_1, \ldots, v_n if there is $\gamma > 0$ such that for every $x \in A$ we have $\|ux\| \leq \gamma (\|v_1x\| + \ldots + \|v_nx\|)$. It is shown that for every $x \in A$ we have $\|ux\| \leq \gamma (\|v_1x\| + \ldots + \|v_nx\|)$. It is shown for finite-dimensional algebras that the above condition is sufficient for u to belong to the left ideal generated by v_1, \ldots, v_n in some superalgebra of A. A similar result is proved for subalgebras of the algebra of all bounded operators on a Hilbert space.

1. Introduction.

Let A be a commutative Banach algebra with unit e. If u, v_1, \ldots, v_n are elements of A then u is said to be dominated by v_1, \ldots, v_n if there is a positive constant γ such that for every $x \in A$ we have

\[\|ux\| \leq \gamma (\|v_1x\| + \ldots + \|v_nx\|). \]

We call a commutative unital Banach algebra B an extension of A if A is isometrically embedded in B and the unit of B is that of A. It is evident that (1) is a necessary condition for the existence of an extension B of A such that

\[u = b_1v_1 + \ldots + b_nv_n \]
for some $b_1, \ldots, b_n \in B$. The problem whether the converse is true was known for long as the domination conjecture. Arens [1] gave the positive answer for $n = 1$. It was later Zelazko [6] who proved it for function algebras, where the algebra of all bounded functions on the Silov boundary of A appeared to serve as the desired extension of A, common to all systems u, v_1, \ldots, v_n satisfying (1). In 1982 Müller [4] provided an example showing that even for $n = 2$ the domination conjecture is false.

In this note we study the non-commutative counterpart of the problem. It should be noted that dropping the commutativity is not simply a generalization: we relax the assumptions on A but at the time we naturally have to admit non-commutative extensions of A. To our knowledge, the problem whether (1) implies (2) is in general open even for $n = 1$ and $u = e$. We show in Section 2 that the domination conjecture is true for finite-dimensional algebras. This appears as a purely algebraic result and (1) is replaced by the apparently weaker condition

$$ux = 0 \text{ whenever } v_1x = \ldots v_nx = 0.$$

We wish to mention that the commutative domination conjecture is false even in finite-dimensional case (see [4]).

In Section 3 we employ certain well-known ideas of Hilbert space operator theory to show the domination conjecture in the case when A is a (not necessarily self-adjoint) subalgebra of the C^*-algebra $\mathcal{B}(H)$ of all bounded operators on a Hilbert space H. The result is stated under the additional assumption that A contains all finite-dimensional operators.

2. Domination theorem for finite-dimensional algebras.

Given a vector space X we write $L(X)$ for the algebra of all linear operators from X into X.

Lemma 1. Let X be a finite-dimensional vector space. Suppose