PROPERTIES OF COUNTABLE SEPARATION AND IMPLICIT FUNCTION THEOREM (*)

CRISTINA M. DI BARI - PASQUALE VETRO

We consider some properties of countable separation for families \mathcal{A} and \mathcal{D} of subsets of a set X by means of elements of a fixed family $\mathcal{M} \subseteq P(X)$. We give necessary and sufficient conditions, in terms of measurability of some sets constructed by means of multifunctions, in order that the families \mathcal{A} and \mathcal{D} satisfy such a property. As an application we derive an implicit function theorem for functions of Carathéodory-type.

Di Bari in a previous paper [4] introduced the notions of countably \mathcal{A}-\mathcal{D}-separated topological space and weakly countably \mathcal{A}-\mathcal{D}-separated topological space; she obtained a characterization of topological spaces of this type in terms of measurability of some sets constructed by means of multifunctions. In [4] the elements of the families \mathcal{A} and \mathcal{D} of subsets of a topological space (X, τ) are separated by means of elements of a countable family of open sets.

In this paper the topology in X is replaced by a family \mathcal{M} of subsets of X and the elements of \mathcal{A} and \mathcal{D} are separated by means of elements of a countable subfamily of \mathcal{M}. We introduce two concepts of countable $s\mathcal{A}$-\mathcal{D}-separation and we give conditions in order that (X, \mathcal{M}) is of this

(*) Supported by 60% and 40% research fund of M.P.I. of Italy.
type. If \(\mathcal{M} \) is a topology in \(X \), then we obtain results contained in \([1], [4]\) and if \(\mathcal{M} \) is a \(\sigma \)-algebra results contained in \([3], [5], [8]\). We prove, also, an implicit theorem for functions of Carathéodory-type that is an extension of Theorem 4.5 of \([7]\). In order to establish this theorem we make use of the notion of \(\mathcal{P} \)-system.

1. Some preliminaries.

Let \(T \) and \(X \) be sets, a multifunction \(F: T \to X \) is a function from \(T \) to \(\mathcal{P}(X) \), the power set of \(X \). We denote with \(\text{Gr}(F) \) the graph of \(F \), that is, the set \(\{(t, x) \in T \times X : x \in F(t)\} \) and, if \(U \subset X \), with \(F^+(U) \) the set \(\{t \in T : F(t) \subset U\} \).

If \(B \subset \mathcal{P}(X) \), we write \(\sigma(B) \) for the \(\sigma \)-algebra on \(X \) generated by \(B \). If \(A, B \subset \mathcal{P}(X) \) and \(U \subset X \) we denote with \(\langle U \rangle_A \) the set \(\{A \in A : A \subset U\} \), with \(\langle B \rangle_A \) the set \(\{\langle U \rangle_A : U \in B\} \) and with \(\sigma(A, \langle B \rangle) \) the \(\sigma \)-algebra on \(A \) generated by the family \(\langle B \rangle_A \).

We call \((X, \mathcal{M})\) a measurable space iff \(X \) is a non empty set and \(\mathcal{M} \) a \(\sigma \)-algebra on \(X \). The measurable space \((X, \mathcal{M})\) is countably separated if there exists a countable family \(\mathcal{H} \subset \mathcal{M} \) which separates the points of \(X \), that is, for any two distinct points \(x \) and \(y \) in \(X \) there is \(H \in \mathcal{H} \) with \(x \in H \) and \(y \notin H \), or, \(x \notin H \) and \(y \in H \).

If \(Y \) is a set and \(G: Y \to X \) a multifunction we write \(\text{Gr}(F, G) \) for the set \(\{(t, y) \in T \times Y : G(y) \subset F(t)\} \). Besides, if \((T, \mathcal{M}_1)\) and \((Y, \mathcal{M}_2)\) are measurable spaces with \(\mathcal{M}_1 \times \mathcal{M}_2 \) we denote the product \(\sigma \)-algebra on \(T \times Y \).

2. Some properties of separation.

Throughout this paper, unless otherwise indicated, \(X \) is a set and \(\mathcal{M}, \mathcal{A}, \mathcal{D} \) non empty families of subsets of \(X \). The purpose of this paper is that of introducing for \((X, \mathcal{M})\) some properties of separation, which can be