PROPERTIES OF COUNTABLE SEPARATION
AND IMPLICIT FUNCTION THEOREM (*)

CRISTINA M. DI BARI - PASQUALE VETRO

We consider some properties of countable separation for families \(A \) and \(D \) of subsets of a set \(X \) by means of elements of a fixed family \(M \subset \mathcal{P}(X) \). We give necessary and sufficient conditions, in terms of measurability of some sets constructed by means of multifunctions, in order that the families \(A \) and \(D \) satisfy such a property. As an application we derive an implicit function theorem for functions of Carathéodory-type.

Di Bari in a previous paper [4] introduced the notions of countably \(A-D \)-separated topological space and weakly countably \(A-D \)-separated topological space; she obtained a characterization of topological spaces of this type in terms of measurability of some sets constructed by means of multifunctions. In [4] the elements of the families \(A \) and \(D \) of subsets of a topological space \((X, \tau)\) are separated by means of elements of a countable family of open sets.

In this paper the topology in \(X \) is replaced by a family \(M \) of subsets of \(X \) and the elements of \(A \) and \(D \) are separated by means of elements of a countable subfamily of \(M \). We introduce two concepts of countable \(sA-D \)-separation and we give conditions in order that \((X, M)\) is of this

(*) Supported by 60% and 40% research fund of M.P.I. of Italy.
type. If M is a topology in X, then we obtain results contained in [1], [4] and if M is a σ-algebra results contained in [3], [5], [8].

We prove, also, an implicit theorem for functions of Carathéodory-type that is an extension of Theorem 4.5 of [7]. In order to establish this theorem we make use of the notion of T-system.

1. Some preliminaries.

Let T and X be sets, a multifunction $F: T \to X$ is a function from T to $\mathcal{P}(X)$, the power set of X. We denote with $Gr(F)$ the graph of F, that is, the set $\{(t, x) \in T \times X : x \in F(t)\}$ and, if $U \subset X$, with $F^+(U)$ the set $\{t \in T : F(t) \subset U\}$.

If $B \subset \mathcal{P}(X)$, we write $\sigma(B)$ for the σ-algebra on X generated by B. If $A, B \subset \mathcal{P}(X)$ and $U \subset X$ we denote with $\langle U \rangle_A$ the set $\{A \in A : A \subset U\}$, with $\langle B \rangle_A$ the set $\{\langle U \rangle_A : U \in B\}$ and with $\sigma(A, \langle B \rangle)$ the σ-algebra on A generated by the family $\langle B \rangle_A$.

We call (X, M) a measurable space iff X is a non empty set and M a σ-algebra on X. The measurable space (X, M) is countably separated if there exists a countable family $\mathcal{H} \subset M$ which separates the points of X, that is, for any two distinct points x and y in X there is $H \in \mathcal{H}$ with $x \in H$ and $y \notin H$, or, $x \notin H$ and $y \in H$.

If Y is a set and $G: Y \to X$ a multifunction we write $Grc(F, G)$ for the set $\{(t, y) \in T \times Y : G(y) \subset F(t)\}$. Besides, if (T, M_1) and (Y, M_2) are measurable spaces with $M_1 \times M_2$ we denote the product σ-algebra on $T \times Y$.

2. Some properties of separation.

Throughout this paper, unless otherwise indicated, X is a set and M, A, D non empty families of subsets of X. The purpose of this paper is that of introducing for (X, M) some properties of separation, which can be