We give a complete decomposition of the space of curvature tensors with the symmetry properties as the curvature tensor associated with a symmetric connection of Riemannian manifold. We solve the problem under the action of $SO(n)$. The dimensions of the factors, the projections, their norms and the quadratic invariants of a curvature tensor are determined. Several applications for Riemannian manifolds with symmetric connection are given. The group of projective transformations of a Riemannian manifold and its subgroups are considered.

1. Introduction.

A. Let M^n be any n-dimensional manifold with any symmetric connection ∇; R and ρ are the curvature tensor and the Ricci tensor associated with ∇. It is well-known that the Weyl projective curvature
The tensor has the form

\[P(R)(X, Y)Z = R(X, Y)Z + \frac{1}{n^2 - 1} [\eta_\rho(X, Z) + \rho(Z, X)]Y - \]

\[- \frac{1}{n^2 - 1} [\eta_\rho(Y, Z) + \rho(Z, Y)]X + \]

\[+ \frac{1}{n + 1} [\rho(X, Y) - \rho(Y, X)]Z \]

for \(n > 2 \), and for \(n = 2 \) we have

\[P(R)(X, Y)Z = 0 \]

(see for example [27], [28], [36]) where \(X, Y, Z \ldots \in \mathcal{X}(M) \), the algebra of \(C^\infty \) vector fields on \(M \). \(P(R) \) is a tensor that is invariant with respect to each projective transformation of \(M \). \(P(R) \) characterizes a space of constant sectional curvature in very nice way: \(P(R) = 0 \) if and only if \(M^n (n > 2) \) is space of constant curvature (in that case \(R \) is the Riemannian curvature of \(M^n \)).

It is known that \(R \) satisfies the following algebraic properties:

(1.1) \[R(X, Y) = -R(Y, X), \]

(1.2) \[\sigma_{X,Y,Z} R(X, Y)Z = 0 \] (the first Bianchi identity).

\(P(R) \) satisfies these relations (1.1), (1.2) and also

(1.3) \[\rho(P(R)) = 0. \]

B. Let \(V \) is an \(n \)-dimensional vector space and denote by \(\mathcal{R}(V) \) the vector space of curvature tensors. The development of the theory of the decomposition of \(\mathcal{R}(V) \) under the action of some group was initiated by Singer and Thorpe [30]. In this well-known paper the authors consider the vector space \(\mathcal{R}(V) \) consisting of all tensors having the same symmetries as the curvature tensor of a Riemannian manifold, including the first Bianchi identity (in particular for \(n = 4 \)) and they give a geometrical useful description of the splitting of \(\mathcal{R}(V) \) under