JENSEN'S INEQUALITY FOR OPERATOR MONOTONE FUNCTIONS

B. MOND - J.E. PEČARIĆ

In this paper, we shall show that some classical inequalities for monotone functions also hold for operator monotone functions on an arbitrary Hilbert space \(H \).

Such results can be found in the classical book [1, p. 83] or in a new book [2].

Results.

THEOREM 1. A necessary and sufficient condition such that

\[
\left(\sum_{i=1}^{n} p_i \right) f \left(\sum_{i=1}^{n} A_i \right) \geq \sum_{i=1}^{n} p_i f(A_i)
\]

for all strictly positive operators \(A_i \) in \(H \) and strictly positive numbers \(p_i \) is that \(f(x) \) should be operator monotone for \(x > 0 \).

Strict inequality holds if \(f(x) \) is strictly operator monotone and there is more than one \(A \).

Proof. (i) If \(f \) is operator monotone, then

\[
f \left(\sum_{i=1}^{n} A_i \right) \geq f(A_i) \quad (i = 1, \ldots, n).
\]
Multiplying by \(p_i \), and adding all such inequalities gives (1).

(ii) If in (1), we take \(n = 2 \), \(A_1 = A \), \(A_2 = B \), \(p_1 = 1 \), \(p_2 = p \), we obtain

\[
(1 + p)f(A + B) \geq f(A) + pf(B)
\]

Letting \(p \to 0 \), we see that \(f(A + B) \geq f(A) \), so that \(f \) is monotone.

Remark. In fact, Theorem 1 holds if all \(p_i \) are positive operators, permutable with \(A \), and \(\sum_{i=1}^{n} A_i \).

Theorem 2. If for \(x > 0 \), the function \(x^{-1}f(x) \) is operator monotone for permutable operators, then for all strictly positive operators \(A_i \), \(i = 1, \ldots, n \) on \(H \) permutable with \(\sum_{i=1}^{n} A_i \), we have

\[
(2) \quad f \left(\sum_{i=1}^{n} A_i \right) \geq \sum_{i=1}^{n} f(A_i).
\]

There is strict inequality if \(x^{-1}f(x) \) is strictly operator monotone for permutable operators and there is more than one \(A_i \);

Proof. Since \(x^{-1}f(x) \) is operator monotone,

\[
\left(\sum_{i=1}^{n} A_i \right)^{-1} f \left(\sum_{k=1}^{n} A_k \right) \geq A_i^{-1} f(A_i) \quad (i = 1, \ldots, n).
\]

Multiplying \(A_i \), we get

\[
A_i \left(\sum_{k=1}^{n} A_k \right)^{-1} f \left(\sum_{k=1}^{n} A_k \right) \geq f(A_i).
\]

Summing over \(i = 1, \ldots, n \), gives (2).

Remark. Theorems 1 and 2 are operator versions of Theorems 102 and 103 from [1].

A generalization of theorem 2 can be given as follows: