DERIVATIONS IN PRIME RINGS

QING DENG

Let R be a prime ring and D a nonzero derivation of R. If one of the four conditions holds in R, then R is commutative:

(i) $X^2 D(X) - D(X)X^2 \in Z(R)$, $\text{Char } R \neq 2$;
(ii) $X^2 D(X) - XD(X)X \in Z(R)$, $\text{Char } R \neq 2$;
(iii) $X^3 D(X) - D(X)X^3 = 0$, $\text{Char } R \neq 2, 3$;
(iv) $X^m D(X) + X^m D(X)X^{n-m} \in Z(R)$, where m, n are fixed integers, $0 < m < n$ and $\text{Char } R = 0$ or $\text{Char } R > n$.

A number of authors have generalized Posner's second theorem [1] in several ways (see [2], [3], and [4]). In this paper, we give some conditions on commutativity of prime rings with a nonzero derivation. Our methods are somewhat different from those employed by other authors. Throughout this paper, R denote an associative ring with center $Z(R)$, and D a nonzero derivation of R.

We shall need the following three lemmas.

1980 Mathematics Subject Classification (1985 Revision). Primary 16A12, 16A68, 16A72.

Key words and phrases. Prime ring, derivation, commutativity.
LEMMA 1. Let R be a prime ring with $\text{Char} R = 0$ or $\text{Char} R > n$, m and n be fixed integers with $0 \leq m < n$. If R satisfies either

(i) $X^n D(X) + X^m D(X)X^{n-m} \in \mathcal{Z}(R)$, or

(ii) $X^n D(X) - X^m D(X)X^{n-m} \in \mathcal{Z}(R)$

then $D(a) = 0$ for each a in R such that $a^2 = 0$.

Proof. If R satisfies (i), by replacing X by ra in (I), we have

(1) $(ra)^n D(ra) + (ra)^m D(ra)(ra)^{n-m} \in \mathcal{Z}(R)$

By commuting (1) with a, we get

(2) $a((ra)^n D(ra) + (ra)^m D(ra)(ra)^{n-m}) = (ra)^n D(ra)a$

In (2), by multiplying a from the left, we obtain

$a(ra)^n D(ra) a = 0$

that is

$a(ra)^{n-1} D(a) a = 0$.

Since R is prime and $\text{Char} R = 0$ or $\text{Char} R > n$, then $D(a)a = 0$ by [5]. And $D(a^2) = aD(a) + D(a)a = 0$, so we get

(3) $aD(a) = D(a)a = 0$.

For all $r \in R$, by (3) we gain

(4) $aD(ar) = D(ra)a = 0$.

By induction, it is easy to see

$(ar + ara)^k = (ar)^k + (ar)^k a$.

So replacing X by $ar + ara$ in (I), we obtain

(5) $(ar)^n D(ar) + (ar)^{n+1} D(a) + (ar)^n D(ar)a + (ar)^m D(ar)\cdot$

$(ar)^{n-m} + (ar)^m D(ar)(ar)^{n-m} a \in \mathcal{Z}(R)$.