A CHARACTERIZATION OF H-CLOSED URYSOHN SPACES

by Larry L. Herrington and Paul E. Long (Fayetteville, U.S.A.)

SUMMARY. The graph \(G(f) \) of \(f: X \to Y \) is defined to be \(* \)-closed if for each \((x, y) \notin G(f) \) there exist open sets \(U \) and \(V \) containing \(x \) and \(y \), respectively, such that \(U \times \text{Int}(\text{cl}(V)) = \emptyset \). A characterization of \(H \)-closed Urysohn spaces is obtained using functions with \(* \)-closed graphs.

Definition 1. Let \(f: X \to Y \) be any function. The graph \(G(f) \) of \(f \) is \(* \)-closed if for each \((x, y) \notin G(f) \) there exist open sets \(U \) and \(V \) containing \(x \) and \(y \), respectively, such that \(U \times \text{Int}(\text{cl}(V)) = \emptyset \).

Lemma 1. The graph of \(f: X \to Y \) is \(* \)-closed if and only if for each \(x \in X \) and \(y \in Y \) such that \(y \neq f(x) \), there exists an open set \(U \) containing \(x \) and an open set \(V \) containing \(y \) such that \(f(U) \cap \text{Int}(\text{cl}(V)) = \emptyset \).

If \((Y, T)\) is a topological space, we denote by \(T_* \) the topology on \(Y \) generated by the collection of all regular-open sets in \((Y, T)\) as a base. The topology \(T_* \) is called the semi-regular topology induced by \(T \).

Theorem 1. The function \(f: X \to (Y, T) \) has a \(* \)-closed graph if and only if \(f: X \to (Y, T_*) \) has a closed graph.

Proof. For the set \(G(f) \subset X \times (Y, T) \) to be \(* \)-closed is precisely that \(G(f) \subset X \times (Y, T_*) \) be closed.

Of course, a function with a \(* \)-closed graph also has a closed graph. In view of Theorem 1, the concepts of \(* \)-closed graphs and closed graphs coincide for functions \(f: X \to Y \) where \(Y \) has the semi-regular topology. In general, however, a function with a closed graph need not have a \(* \)-closed graph as Example 1 shows.
Definition 2 [5]. A function \(f: X \to Y \) is almost-continuous if for each \(x \in X \) and open \(V \) containing \(f(x) \), there exists an open \(U \) containing \(x \) such that \(f(U) \subseteq \text{Int}(\text{cl}(V)) \).

Theorem 2. Let \(f: X \to (Y, T) \) be almost-continuous where \((Y, T) \) is Hausdorff. Then \(f \) has a \(* \)-closed graph.

Proof. The space \((Y, T) \) is Hausdorff if and only if \((Y, T_\#) \) is Hausdorff. Also, \(f: X \to (Y, T) \) is almost-continuous if and only if \(f: X \to (Y, T_\#) \) is continuous. Therefore, \(f: X \to (Y, T_\#) \) has a closed graph [2, Theorem 1.5 (3), p. 140] so that \(f: X \to (Y, T) \) has a \(* \)-closed graph by Theorem 1.

Definition 3 [4]. A space \(Y \) is nearly-compact if and only if each regular-open cover of \(Y \) has a finite subcover.

Theorem 3. Let \((Y, T) \) be a nearly-compact space. For every topological space \(X \), each \(f: X \to (Y, T) \) with a \(* \)-closed graph is almost-continuous.

Proof. Theorem 1 shows \(f: X \to (Y, T_\#) \) has a closed graph. Since \((Y, T) \) is nearly-compact if and only if \((Y, T_\#) \) is compact, \(f: X \to (Y, T_\#) \) is continuous. It follows that \(f: X \to (Y, T) \) is almost-continuous.

The following example shows the \(* \)-closed graph condition of Theorem 3 cannot be relaxed to a closed graph condition.

Example 1. Let \(Y = [0, 1] \times [0, 1] \) have the topology \(T \) generated by the usual open sets and sets of the form \(Y - (B \times [0]) \) where \(B \subseteq Q \cap [0, 1] \) (\(Q \) is the rationals) as a subbase. Note that \(Y \) is a nearly-compact Hausdorff space. Let \(A = Q \cap [0, 1] \) and define \(f: A \to (Y, T) \) by \(f(x) = (x, 0) \) if \(x \neq 0 \) and \(f(0) = (1, 1) \). Evidently \(f \) has a closed graph. However, since the semi-regular topology on \(Y \) is the usual topology, it is easy to see that \(f: X \to (Y, T) \) does not have a closed graph, hence \(f: X \to (Y, T_\#) \) does not have a \(* \)-closed graph. Also, \(f: X \to (Y, T_\#) \) is not continuous at \(x = 0 \) so that \(f: X \to (Y, T) \) is not almost-continuous.

We now let \(S \) be the class of topological spaces containing the class of Hausdorff, completely normal and fully normal spaces and use the results of Professor Kasahara [3] to obtain the following characterization of nearly-compact spaces. However, we first define a weakly Hausdorff space.

Definition 4 [6]. A space \(Y \) is weakly Hausdorff if for each \(y \in Y \), \(\{y\} = \bigcap \{F \subseteq Y : F \text{ is regular-closed in } Y \text{ and contains } y\} \).