IDENTITIES OF SYMMETRIC AND SKEW-SYMMETRIC MATRICES IN CHARACTERISTIC p

GÁBOR RÉVÉSZ - JENŐ SZIGETI

It is well known how the Kostant-Rowen Theorem extends the validity of the famous Amitsur-Levitzki identity to skew-symmetric matrices. Here we give a general method, based on a graph theoretic approach, for deriving extensions of known permanental-type identities to skew-symmetric and symmetric matrices over a commutative ring of prime characteristic. Our main result has a typical Kostant-Rowen flavour: If $M \geq p[n + 1/2]$ then

$$C_M(X, Y) = \sum_{\alpha, \beta \in \text{Sym}(M)} x_{\alpha(1)}y_{\beta(1)}x_{\alpha(2)}y_{\beta(2)}\cdots x_{\alpha(M)}y_{\beta(M)} = 0$$

is an identity on $M_n^-(\Omega)$, the set of $n \times n$ skew-symmetric matrices over a commutative ring Ω with $p1_\Omega = 0$ (provided that $P > \sqrt{n + 1/2}$). Otherwise, the stronger condition $M \geq pn$ implies that $C_M(X, Y) = 0$ is an identity on the full matrix ring $M_n(\Omega)$.

1. Introduction.

The main aim of the present paper is to give a method for deriving identities of permanental type for symmetric and skew-symmetric matrices over commutative rings of prime characteristic.

This research was supported by the European Community's Action Go West no. 8323 and 8324, and by the Hungarian National Foundation for Scientific Research, grant no. T7558.
Our method combines, ingenious ideas of Rosset [5] and of Rowen [6] in order to count modulo p the number of certain Eulerian paths in directed or partially directed graphs. While Rosset's proof of the Amitsur-Levitzki Theorem uses the exterior algebra, we shall replace it by a similar, but commutative algebra: we shall consider incidence matrices of graphs over the factor algebra of the commutative polynomial algebra $Q[v_1, v_2, ...]$ with respect to the ideal generated by the monomials $v_1^2, v_2^2, ...$

The most important tool we use is the following observation due to Rowen: for skew-symmetric $2m \times 2m$ matrices U, V over a field of characteristic zero we have

\begin{equation}
(UV)^m - \mu_1(UV)^{m-1} + \mu_2(UV)^{m-2} - \ldots + (-1)^m \mu_m(UV)^0 = 0,
\end{equation}

where

\begin{equation}
\mu_0 = 1, \quad 2k\mu_k = \sum_{i=1}^{k} (-1)^{i-1} \mu_{k-i} tr(UV)^i, \quad 1 \leq k \leq m.
\end{equation}

We note that the above identities have been also fruitfully exploited in recent papers of Ma Wenxin-Racine [4] and Giambruno-Valenti [2].

Making use of the graph-theoretical results of Section 2, the first theorem we prove in Section 3 concerns the double permanental Capelli polynomial

\begin{equation}
C_M(X, Y) = \sum_{\alpha, \beta \in \text{Sym}(M)} x_{\alpha(1)} y_{\beta(1)} x_{\alpha(2)} y_{\beta(2)} \ldots x_{\alpha(M)} y_{\beta(M)}
\end{equation}

in the set \{x_1, x_2, \ldots, x_M, y_1, y_2, \ldots, y_M\} of non-commuting indeterminates.

It was proved in [3] that $C_M(X, Y) = 0$ is an identity of $M_n(\Omega)$ if and only if $M \geq pn$, where the prime $p \geq 2$ is the characteristic of the commutative ring Ω.

For $p > \sqrt{n + 1/2}$, $p \neq 2$ and for skew-symmetric x's and y's we shall prove the stronger assertion, that $C_M(X, Y) = 0$ is an identity in $M_n(\Omega)$ if $M \geq p[n + 1/2]$.

Apart from the curious condition $p > \sqrt{n + 1/2}$ this is reminiscent to Giambruno's result on ordinary double Capelli