A NOTE ON THE USE OF MEDIAN RANGES

BY MASAAMI SIBUYA
(Receiver March 30, 1962)

In setting up quality control charts, the mean-range is often used to estimate the population standard deviation. E. B. Ferrel [1] has pointed out the possibility of using, instead of the mean-range, the median-range which is efficient enough for that purpose. In this paper Ferrel has given a table of expected values of the median-range for different values of \(n \), the sample size. These are asymptotic values which are obtained under the assumption that the number, \(N \), of ranges from which the median-range is obtained, is very large. In fact, they are the 50% points of the distributions of ranges from normal samples. These values also appear in [2]. In this note we examine an asymptotic formula for the expected value of the median-range in normal samples.

The author is thankful to Dr. A. Matthai for presenting the problem for investigation.

In general, the expected value of the median \(\bar{X} \) in a sample of size \(N \) from the population with probability density function \(f(x) \) is shown (see [3]) to be

\[
E(\bar{X}) = x_{0.5} \left[1 - \frac{1}{8(N+2)} \frac{f'(x_{0.5})}{f''(x_{0.5})} + O\left(\frac{1}{N^2} \right) \right],
\]

when \(N \) is odd,

and

\[
E(\bar{X}) = x_{0.5} \left[1 - \frac{1}{8(N+1)} \frac{f'(x_{0.5})}{f''(x_{0.5})} + O\left(\frac{1}{N^2} \right) \right],
\]

when \(N \) is even,

where \(x_{0.5} \) is the 50% point of the distribution.

From the tables of the probability density function of the range [4], \(f(x_{0.5}) \) have been computed by interpolation and \(f'(x_{0.5}) \) by numerical differentiation.

Let \(R \) be the median of \(N \) ranges in independent normal samples of size \(n \).

Then

\[
\frac{E(R)}{\sigma} = \begin{cases}
\frac{d_n + \frac{e}{N+2} + O\left(\frac{1}{N^2} \right)}{\sigma}, & \text{when } N \text{ is odd}, \\
\frac{d_n + \frac{e}{N+1} + O\left(\frac{1}{N^2} \right)}{\sigma}, & \text{when } N \text{ is even},
\end{cases}
\]
where \(d_n \) and \(e \) are function of \(n \), values of which are shown in the following table 1.

In setting up quality control charts, the second term which is small may be neglected.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(d_n)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.95387</td>
<td>0.29519</td>
</tr>
<tr>
<td>3</td>
<td>1.588</td>
<td>0.162</td>
</tr>
<tr>
<td>4</td>
<td>1.978</td>
<td>0.124</td>
</tr>
<tr>
<td>5</td>
<td>2.257</td>
<td>0.108</td>
</tr>
<tr>
<td>6</td>
<td>2.472</td>
<td>0.098</td>
</tr>
<tr>
<td>7</td>
<td>2.645</td>
<td>0.093</td>
</tr>
<tr>
<td>8</td>
<td>2.791</td>
<td>0.090</td>
</tr>
<tr>
<td>9</td>
<td>2.915</td>
<td>0.086</td>
</tr>
<tr>
<td>10</td>
<td>3.024</td>
<td>0.084</td>
</tr>
</tbody>
</table>

In case \(n=2 \), the distribution function of normal range is

\[
F(R) = 2\Phi\left(\frac{R}{\sqrt{2\sigma}}\right) - 1, \quad 0 < R < \infty,
\]

where \(\Phi(x) \) is the distribution function of standard normal distribution.

Further, if \(N \) is odd, i.e., \(N=2M+1 \),

\[
\frac{E(\hat{R})}{\sigma} = \frac{2\sqrt{2N}}{(M!)^2} \int_{-\infty}^{\infty} x[2\Phi(x) - 1]^M[2 - 2\Phi(x)]^N d\Phi(x).
\]

The values of (5) were computed for \(N=3 \) (2) 15 by numerical integration, the results of which are shown in table 2 with the approximate values based on (3). The variances and the efficiency of \(\hat{R} \) relative to the mean-range \(\bar{R} \) in the estimation of \(\sigma \) were also computed at the same time.