Eigenvalue estimate on a compact Riemann manifold

ZHAO Di (赵 迪)
(Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China)

Received October 6, 1998

Abstract Let M be a compact Riemann manifold with the Ricci curvature $\geq -R (R = \text{const.} > 0)$. Denote by d the diameter of M. Then the first eigenvalue λ_1 of M satisfies $\lambda_1 \geq \frac{\pi^2}{d^2} - 0.52R$. Moreover if $R \leq \frac{5\pi^2}{3d^2}$, then $\lambda_1 \geq \frac{\pi^2}{d^2} - \frac{R}{2}$.

Keywords: Riemann manifold, eigenvalue, Ricci curvature.

For a compact Riemann manifold, there are many estimates about its first eigenvalue λ_1. The main results[1–4] concerned were obtained by the method of the gradient estimate of eigenfunctions introduced by Li and Yau in ref. [3]. Here we quote some important results as follows.

Theorem A[1]. Let M be a compact Riemann manifold with non-negative Ricci curvature and d the diameter of M. Then $\lambda_1 \geq \frac{\pi^2}{d^2}$.

Theorem B[2]. Let M be an m-dimensional compact Riemann manifold with the Ricci curvature $\geq - R (R = \text{const.} > 0)$, and d the diameter of M. Then $\lambda_1 \geq \frac{\pi^2}{d^2} \exp \left(- C_m \sqrt{Rd^2} \right)$, where $C_m = \max(\sqrt{m} - 1, \sqrt{2})$.

Theorem C[2]. Under the hypothesis of Theorem B, $\lambda_1 \geq \frac{\pi^2}{d^2} - R$.

Yang pointed out that there should be the following estimates[2]:

$$\lambda_1 \geq \frac{\pi^2}{d^2} - \frac{1}{2} R,$$

(1)

$$\lambda_1 \geq \frac{\pi^2}{d^2} \exp \left(- \frac{1}{2} C_m \sqrt{Rd^2} \right).$$

(2)

(2) was proved in ref. [4]. Some authors have been trying to improve the estimates in refs. [1,2] recent years, but their results do not seem successful. For details, see refs. [1–5]. On the basis of refs. [1,2], we shall prove the following estimates.

Theorem 1. Let M be a compact Riemann manifold with the Ricci curvature $\geq - R$, $R = \text{const.} > 0$, and d the diameter of M. Then $\lambda_1 \geq \frac{\pi^2}{d^2} - 0.52R$.

Theorem 2. Under the hypothesis of Theorem 1, if $R \leq \frac{5\pi^2}{3d^2}$, then $\lambda_1 \geq \frac{\pi^2}{d^2} - \frac{1}{2} R$.

Remark. From Theorem C and (1), we note that $R = \text{const.}$ should be smaller relative to π^2/d^2, since only in this case are the results of significance. So the hypothesis $R \leq \frac{5\pi^2}{3d^2}$ above
is reasonable.

1 Notations and formulas

In this paper we shall use the same notations as in refs. [1, 2]. Let \(M \) be an \(m \)-dimensional orientable compact Riemann manifold with its first eigenvalue \(\lambda_1 \), and let \(\{ e_i \} \) be a local orthonormal frame on \(M \) with the coframe \(\{ \omega^i \} \). Then there exist Riemann connection forms \(\{ \omega^i_j \} \) on \(M \) such that \(d\omega^i + \omega^i_j \wedge \omega^j = 0 \), \(d\omega^i_j + \omega^i_k \wedge \omega^k_j = \frac{1}{2} R^k_{ij} \omega^k \wedge \omega^i \), where \(1 \leq i, j, k, l \leq m \), and \(R^k_{ij} = R^k_{jkl} \) are the Riemann curvature tensors of \(M \). Here and below, repeated indices mean summation.

Let \(f \) be a smooth function on \(M \). Its covariant derivatives \(f, f_i, f_{ij}, f_{ijk} \) are successively defined by \(df = f\omega^i \), \(df_i = f_i \omega^i \), \(df_{ij} = f_{ij} \omega^i \wedge \omega^j \), \(df_{ijk} = f_{ijk} \omega^i \wedge \omega^j \wedge \omega^k \). From these and the Ricci identity, we have

\[
\nabla f = f_i \omega^i,
\nabla f_i = f_{ij} \omega^i,
\nabla f_{ij} = f_{ijk} \omega^i \wedge \omega^j.
\]

The Laplacian of \(f \) is defined by \(\Delta f = \sum f_{ii} \).

Suppose \(f \) is an eigenfunction of \(\Delta \) corresponding to \(\lambda_1 \) on \(M \), i.e. \(\Delta f = -\lambda_1 f \). Since \(M \) is compact, without loss of generality we choose \(f \) such that \(\Delta f = -\lambda_1 f \), \(\lambda_1 = \max f = -k \) \((0 < k \leq 1)\). Set \(u = (2f + k - 1)(1 - \delta)/(k + 1) \), where \(\delta \) is a small enough positive constant. Then we have \(\Delta u = -\lambda_1(u + a) \), \(\max u = 1 - \delta \), \(\min u = -1 + \delta \), where \(a = (1 - k)(1 - \delta)/(1 + k) \), \(0 < a < 1 \).

For each small enough \(\delta > 0 \), let \(\theta(x) = \arcsin u(x) \), \(x \in M \). Then \(\theta(x) \) is a smooth function. And its gradient can be written as \(\nabla \theta = \nabla u/\sqrt{1 - u^2} \). Now consider a special function \(U(\theta) \) such that

\[
U(\theta_0) \equiv \max_{\theta(x) = \theta_0} |\nabla \theta(x)|^2, \quad \forall \theta_0 \in \left[-\frac{\pi}{2} + \delta_1, \frac{\pi}{2} - \delta_1 \right],
\]

where \(\delta_1 = \arcsin \sqrt{\delta(2 - \delta)} \). Clearly \(U \) is continuous and \(U(\pm (\frac{\pi}{2} - \delta_1)) = 0 \). Moreover \(\forall \theta_0 \in \left[-\frac{\pi}{2} + \delta_1, \frac{\pi}{2} - \delta_1 \right], \exists x_0 \in M \) s. t. \(\theta(x_0) = \theta_0 \), \(|\nabla \theta|^2(x_0) = U(\theta_0) \).

Because we shall let \(\delta \to 0 \) (hence \(\delta_1 \to 0 \)), from now on we assume that (unless otherwise explained) \(U \) is defined on \((-\pi/2, \pi/2) \).

2 Some lemmas

Given a compact Riemann manifold \(M \), its Ricci curvature \(\geq -R \), \(R = \text{const.} > 0 \). Let \(\lambda_1 \) \((\lambda_1 > 0)\) be the first eigenvalue of \(M \), and let \(R_1 = R/\lambda_1 \). For the function \(U(\theta) \) defined above, we have the following.

Lemma 1. Let \(y(\theta) \) be a \(C^2 \)-function on \((-\pi/2, \pi/2) \) such that \(U(\theta) \leq \lambda_1 y(\theta) \), and \(U(\theta_0) = \lambda_1 y(\theta_0) > 0 \), for some \(\theta_0 \in (-\pi/2, \pi/2) \). Then at \(\theta = \theta_0 \) there holds

\[
y \leq 1 + a \sin \theta + R_1 \cos^2 \theta - y' \cos \theta \sin \theta
\]

\[
+ \frac{1}{2} y'' \cos^2 \theta - \frac{y'}{4y} [(y - 1) \cos^2 \theta]' + 2a \cos \theta. \tag{4}
\]

Proof. Set \(z(\theta) = \lambda_1 y(\theta) \), \(w(x) = |\nabla \theta(x)|^2 - 2a \theta \) \(\cos \theta \). By (3), \(\exists x_0 \in M \), s. t. \(\theta(x_0) = \theta_0 \), \(|\nabla \theta(x_0)|^2 = U(\theta_0) \). So the \(C^2 \)-function \(w(x) \) attains its maximum at \(x_0 \). Applying the maximum principle, we have at \(x = x_0 \), \(w(x) = 0 \), \(\nabla w = 0 \) and \(\Delta w \leq 0 \). Therefore, at \(\theta =