Operators with connected spectrum + compact operators =
strongly irreducible operators

JIANG Chunlan (蒋春澜)
(Department of Applied Mathematics, Hebei University of Technology, Tianjin 300130, China)

and JI Youqing (纪友清)
(Department of Mathematics, Jilin University, Changchun 130023, China)

Received November 4, 1998

Abstract Herrera’s conjecture that each operator with connected spectrum acting on complex, separable Hilbert space can be written as the sum of a strongly irreducible operator and a compact operator is proved.

Keywords: operators with connected spectrum, compact operators, strongly irreducible operators.

Let \(L(H) \) denote the algebra of all bounded linear operators acting on a complex, separable, infinite-dimensional Hilbert space \(H \). An operator \(T \in L(H) \) is said to be strongly irreducible if it does not commute with any nontrivial idempotents\(^1\). In the above definition, if orthogonal projection replaces idempotent, then \(T \) is said to be irreducible. It is well known that reducibility is unitary invariant, but strongly irreducibility is similarly invariant.

Halmos\(^3\) proved that each \(T \) in \(L(H) \) can be written as the sum of a irreducible operator and a compact operator with small norm. If \(\sigma(T) \), the spectrum of operator \(T \), is the union of two disjoints (an infinite set and a compact set), then for arbitrary compact operator \(K \), \(T + K \) is still strongly reducible. Herrero and Jiang showed that each \(T \) in \(L(H) \) with connected spectrum can be expressed as the sum of a strongly irreducible operator and an operator with small norm\(^4\). In 1988, Herrero raised the following conjecture: Each operator with connected spectrum can be written as the sum of a strongly irreducible operator and a compact operator.

In ref. [5], Jiang et al. proved affirmatively Herrero’s conjecture for all essentially normal operators with connected spectrum. Jiang et al. proved that Herrero’s conjecture holds for all biquasitriangular operators with connected spectrum\(^1\). In ref. [6], Jiang and Guo showed that Herrero’s conjecture is true for all hoponormal operators with connected spectrum. Recently, Ji\(^2\) proved that each quasitriangular operator with connected spectrum can be written as the sum of a strongly irreducible operator and a compact operator with small norm.

In this paper, we prove Herrero’s conjecture and give the following results.

Theorem 1. Let \(T \in L(H) \), \(\sigma_0(T) \) denote the normal point spectrum of \(T \). If \(\sigma(T) \setminus \sigma_0(T) \) is connected, then there exists a compact \(K \) such that \(T + K \) is a strongly irreducible operator.

Theorem 2. Given a natural number \(n \) and a bounded connected open set of \(C \), denoted by \(\Omega \), \(B_n(\Omega) \) denotes the set of the Cowen-Douglas operators with index \(n \) in \(\Omega \). Then \(\forall T \in B_n(\Omega) \) and \(\varepsilon > 0 \), and there exists a compact \(K \) with \(\| K \| < \varepsilon \) such that \(T + K \in B_n(\Omega) \cap (SI) \), where \((SI) \) stands for the set of all strongly irreducible operators in \(L(H) \).

1 Lemmas

Let \(\Omega \) be a non-empty bounded open subset of \(C \) such that \((\Omega)^0 = \Omega \), where \((\Omega)^0 \) denotes the interior of \(\Omega \). Set \(I' = \{ a \} \). Then we have

Theorem A[7].

(i) There exists a normal operator \(M(\Gamma) = \begin{bmatrix} M_+ (\Gamma) & Z \\ 0 & M_- (\Gamma) \end{bmatrix} \).

(ii) \(\sigma(M(\Gamma)) = \sigma_e(M(\Gamma)) = \sigma_e(M_+ (\Gamma)) = \sigma_e(M_- (\Gamma)) = \Gamma \),

\[\sigma(M_+ (\Gamma)) = \sigma(M_- (\Gamma)) = \Omega, \quad \text{ind}(M_+ (\Gamma) - \lambda) = \text{ind}(M_- (\Gamma) - \lambda)^* = -1; \lambda \in \Omega, \]

\[\text{dimker}(M_+ (\Gamma) - \lambda) = \text{dimker}(M_- (\Gamma) - \lambda)^* = 0; \lambda \in \Omega, \]

(iii) \(Z \) is a compact operator.

\(\sigma_e(\cdot) \) denotes the essentially spectrum of operator and \(\text{ind}(\cdot - \lambda) \) the Fredholm index of operator in \(\lambda \).

Theorem A shows that \(M_+ (\Gamma) \) and \(M_- (\Gamma) \) are essentially normal. Furthermore, if \(\Omega \) is connected, then \(M_+ (\Gamma) \in B_1(\Omega^*) \); \(M_- (\Gamma) \in B_1(\Omega) \), where \(\Omega^* = \{ \lambda; \lambda \in \Omega \} \).

Theorem B[1]. Given \(A, B \in L(H) \), the Rosenblum operator \(\tau_{AB} \in L(H) \) is defined by \(\tau_{AB}(X) = AX - XB \). Then the following are equivalent:

1. \(\sigma_r(A) \cap \sigma_l(B) = \emptyset \);
2. \(\tau_{AB} \) is surjective;
3. \(\text{Ran} \tau_{AB} \) contains the all-compact operator of \(L(H) \).

Lemma 1. Let \(T = \begin{bmatrix} T_1 & T_{12} \\ 0 & T_2 \end{bmatrix} \) satisfy the following conditions:

1. \(T_2 \in B_n(\Omega) \cap (SI) \).
2. \(\sigma_0(T_1) = \sigma(T_1) \cap \Omega = \{ \lambda_k \mid k \geq 1 \} \) such that \(\text{null}(T_1 - \lambda_k) = \text{dim}H_1(\lambda_k, T_{11}) = n \) and \(\forall k(1, 2, \ldots) = H_1 \) where \(H_1(\lambda_k, T_{11}) \) denotes Riesz decomposition space of \(T_0 \) on \(\lambda_k \).
3. \(B_k = P_{\ker(T_1 - \lambda_k)} : T_{12} \mid_{\ker(T_2 - \lambda_k)} \) is injective, where \(P_{\ker(T_1 - \lambda_k)} \) is the orthogonal projection onto \(\ker(T_1 - \lambda_k)^* \).

Then \(T \in B_n(\Omega) \cap (SI) \).

Proof. We claim that \(\ker(T - \lambda_k) = \ker(T_1 - \lambda_k) \). If there are \(x \in H_1 \), \(y \in H_2 \) such that \(\begin{bmatrix} (T_1 - \lambda_k) & T_{12} \\ 0 & (T_2 - \lambda_k) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0 \), then \((T_1 - \lambda_k)x + T_{12}y = 0, \ (T_2 - \lambda_k)y = 0. \)

Since \(P_{\ker(T_1 - \lambda_k)} : (T_1 - \lambda_k) = 0 \), we know \(P_{\ker(T_1 - \lambda_k)} : T_{12} \gamma = 0 \). Since \(P_{\ker(T_1 - \lambda_k)} \) we know that \(T_{12} \mid_{\ker(T_1 \lambda_k)} \) is injective and \(y \in \ker(T_{12} - \lambda_k) \), \(y = 0. \) This shows \(\ker(T - \lambda_k) = \ker(T_1 - \lambda_k) \).

1) see footnote 2) on page 925.