A note on \(n \)-edge chromatic number

SUN Liang\(^1\) and ZHANG Zhongfu\(^2\)

1. Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, China; 2. Institute of Applied Mathematics, Lanzhou Institute of Railway, Lanzhou 730070, China

Keywords: graph, complement, \(n \)-edge chromatic number.

All graphs appearing in this note are simple. A graph with \(p \) vertices and \(q \) edges will be called a \((p, q)\)-graph. The maximum degree of \(G \) is denoted by \(\Delta(G) \).

Let \(n \geq 2 \) be an integer. The \(n \)-edge chromatic number \(\chi'_n(G) \) of a simple graph \(G \) is the minimum cardinality of a set of colors with which one can assign the colors to the edges of \(G \) such that the edges on a path of length less than or equal to \(n \) receive different colors.

The aim of this note is to explore the bounds for \(\chi'_n(G) \) and \(\chi'_n(G) + \chi'_n(\overline{G}) \). It is quite obvious that \(\chi'_2(G) = \chi'(G) \), the edge chromatic number of \(G \). About the bounds for \(\chi'_2(G) \), Vizing showed the following conclusion.

Lemma 1. For any simple graph \(G \),
\[
\Delta(G) \leq \chi'_2(G) \leq \Delta(G) + 1.
\]

The bounds for \(\chi'_2(G) + \chi'_2(\overline{G}) \) are due to Vizing also.

Lemma 2. Let \(G \) be a graph of order \(p \). If \(p \) is even, then
\[
p - 1 \leq \chi'_2(G) + \chi'_2(\overline{G}) \leq 2(p - 1);
\]
if \(p \) is odd, then
\[
p \leq \chi'_2(G) + \chi'_2(\overline{G}) \leq 2p - 3.
\]

Let \(G \) be a \((p, q)\)-graph. If \(n \geq 3 \), then it is trivial to prove that \(\chi'_n(G) \leq q \), and \(\chi'_n(G) + \chi'_n(\overline{G}) \leq p(p - 1)/2 \).

Now we shall discuss the lower bounds for \(\chi'_n(G) (n \geq 3) \) and \(\chi'_n(G) + \chi'_n(\overline{G}) (n \geq 5) \).

A subset \(D \) of \(E(G) \) is said to be an \(n \)-edge-complete set of \(G \) if any two edges \(e_1 \) and \(e_2 \) in \(D \) are in a path of length less than or equal to \(n \) in \(G \).

Theorem 1. If \(D \) is an \(n \)-edge-complete set of \(G \), then \(\chi'_n(G) \geq |D| \).

The following conclusion of Lemma 2 is a direct corollary of Theorem 5.2 in reference [3].
Theorem 2. Let G be a bipartite graph with bipartition (X, Y). If the degree of each vertex in X is greater than that of each in Y, then G has a matching which saturates every vertex in X.

Theorem 3. If G is a (p, q)-graph, then
\[\chi'_3(G) \geq \lceil 2q/p \rceil + \lfloor 2q/p \rfloor - 1. \]
(1)

Proof. Write $r = \lceil 2q/p \rceil$ and $s = \lfloor 2q/p \rfloor$. Let D be a 3-edge-complete set of G, then $|D| = r + 1 > s$ by Lemma 1. Then $|L(v)| = \chi'_3(G) < s$ since $N(v)$ is a 3-edge-complete set of G.

Thus if D is a 3-edge-complete set of G, then $|D| \leq \chi'_3(G) < s$ by Lemma 1. For each edge e, let $N(e) = \{g \in E \mid g = e \text{ or } g \text{ is adjacent to } e\}.$ Then $|N(e)| < \chi'(G) < s$ since $N(e)$ is a 3-edge-complete set of G.

Let $X = \{v \in V \mid d_G(v) > r\}$, then there exist no edges joining the vertices in X. In fact, if e is an edge joining two vertices in X, then $|N(e)| > 2r + 1 > s$, a contradiction. Let $Y = V - X$. Denote by (X, Y) the bipartite graph induced by the edges of G between X and Y. By Lemma 2, (X, Y) has a matching with $|X|$ edges. Let M be a matching of (X, Y) with $|M| = |X|$. If a vertex v is not incident with any edge in M, then $v \in Y$ and $d_G(v) < r$. Thus
\[\sum_{v \in V(G)} |L(v)| \geq (d_1 + \ldots + d_p)/2. \]

Considering the extremal value of function $f(d_1, ..., d_p) = (d_1^2 + \ldots + d_p^2)/2 + q$ on condition that $d_1 + \ldots + d_p = 2q$, we have
\[\sum_{v \in V(G)} |L(v)| \geq q(2q + p)/p. \]

Thus there exists a vertex u in G such that
\[|L(u)| \geq \frac{1}{p} \sum_{v \in V(G)} |L(v)| \geq q(2q + p)/p^2 = t. \]

Hence $\chi'_n(G) \geq |L(u)| \geq t$. Therefore (2) is valid.

Denote by $d(G)$ the diameter of a graph G.

Lemma 3. If $d(G) \geq 4$, then $d(G) \leq 3$.

Lemma 4. If $d(G) \leq 3$, then $\chi'_n(G) = q$ when $n \geq 5$.

The proof of Lemma 4 is trivial.