P21\(^{\text{WAF1/Cip1}}\) Gene Expression in Primary Human Hepatocellular Carcinoma and its Relationship with P53 Gene Mutation

SUN Baohua, WU Zhongbi, RUAN Youbing, YANG Mulan, LIU Bing

Department of Ultrastructural Pathology, Research Center of Experimental Medicine, Tongji Medical University, Wuhan 430030

Summary: P21\(^{\text{WAF1/Cip1}}\), an inhibitor of cyclin-dependent kinases, is a critical downstream effector in the P53-specific pathway of growth control. Increased expression of P21\(^{\text{WAF1/Cip1}}\) has been found to reflect the status of the P53 tumor-suppressor pathway. We investigated the expression of P21\(^{\text{WAF1/Cip1}}\) in a relatively small, but well-characterized group consisting of 28 hepatocellular carcinomas. The samples were previously studied for P53 gene mutation. P21\(^{\text{WAF1/Cip1}}\) expression were identified by *in situ* hybridization and immunohistochemistry. Positive ISH for P21\(^{\text{WAF1/Cip1}}\) transcripts was found in 18 of 28 cases (64.3%). All positive cases by ISH showed detectable P21\(^{\text{WAF1/Cip1}}\) protein reactivity by IHC. No relationship was found between P21\(^{\text{WAF1/Cip1}}\) staining and P53 mutational status. No associations were seen with tumor metastasis, size and tumor grade, except for tumor differentiation status which showed higher frequency of P21\(^{\text{WAF1/Cip1}}\) expression in moderate-well differentiated HCCs than poorly differentiated tumors (P<0.05). It is concluded that expression of P21\(^{\text{WAF1/Cip1}}\) is common in HCCs, but does not correlate with P53 mutational status or pathological parameters investigated except for tumor differentiation. Also, there may be other factors beside P53 that regulate P21\(^{\text{WAF1/Cip1}}\) gene expression in HCCs.

Key words: hepatocellular carcinoma; P53; P21\(^{\text{WAF1/Cip1}}\)

P21\(^{\text{WAF1/Cip1}}\) protein (p21) is the product of *waf1* gene, also known as *cip1*, *sdil*\(^{[1,2]}\). P21\(^{\text{WAF1/Cip1}}\) is a universal inhibitor of cyclin-dependent kinase, which are required for G\(_1\) to S transition. P21\(^{\text{WAF1/Cip1}}\) is a critical downstream effector in the P53-specific pathway of growth control in mammalian cells. P53 expression in response to DNA-damaging agents can promote the transcription of P21\(^{\text{WAF1/Cip1}}\) via interaction of P53 with a P53-binding site in the P21\(^{\text{WAF1/Cip1}}\) promoter. It is wild type P53 other than mutant type P53 that can promote P21\(^{\text{WAF1/Cip1}}\) gene transcription. However, P21\(^{\text{WAF1/Cip1}}\) can also be induced in other events, such as growth factor stimulation or cellular differentiation. Early studies indicated that TGF-\(\beta\), FGF, EGF, PDGF etc, could stimulate P21\(^{\text{WAF1/Cip1}}\) gene expression by P53-independent pathway\(^{[3]}\).

Many human tumors have been demonstrated not to express P21\(^{\text{WAF1/Cip1}}\) protein\(^{[4-7]}\). Recently, colorectal carcinoma and breast carcinoma were found to have high frequency of undetectable P21\(^{\text{WAF1/Cip1}}\) expression\(^{[4,5]}\). No relationship between P21\(^{\text{WAF1/Cip1}}\) staining and P53 protein expression or P53 gene mutational status was found in breast carcinoma or lung non-small-cell carcinoma\(^{[5,7]}\). On the other hand, in colonic carcinoma, immunohistochemical expression of P21\(^{\text{WAF1/Cip1}}\) is inversely related to P53 protein overexpression. These data suggest that P21\(^{\text{WAF1/Cip1}}\) expression in human neoplasm may be regulated in a tissue-specific way.

In this paper, we investigated the expression of P21\(^{\text{WAF1/Cip1}}\) at both immunohistochemical and mRNA levels in a series of P21\(^{\text{WAF1/Cip1}}\) primary human HCC, with an attempt to evaluate P21\(^{\text{WAF1/Cip1}}\) expression frequency in HCC and to find its association with P53 gene mutation.

1 MATERIALS AND METHODS

1.1 Tissue

A cohort of 28 specimens of HCC and 5
non-cancerous adjacent liver were obtained from livers surgically removed in Tongji Hospital during the first half year of 1995. Twenty-three males and 5 females, aged from 27 to 64 years (average of 50.3 years) were involved. The tumor lesions included 14 poor differentiated, 9 moderately and 5 well differentiated liver carcinomas. Two patients had intrahepatic metastasis and 4 cases had extrhepatic metastasis. According to TNM system (1987), 2 HCCs were in grade I; 13 HCCs were in grade II; 8 tumors were in grade III; the remaining 5 cases were in grade IV. All cases were selected on the basis of availability of frozen materials for study and on the absence of extensive chemotherapy-induced tumor necrosis.

1.2 In Situ Hybridization (ISH) Analysis

The P21WAF1/CIP1 cDNA probe was kindly provided by Dr. SJ Elledge (Houston, USA). The probe was labeled and detected using a Dig DNA labeling and detection kit which was purchased from Boehringer Mannheim Biochemica, Germany. Briefly, 4% paraformaldehyde-fixed paraffin embedded samples were cut at 7 μm and adhered to APES-treated slides. The sections were dewaxed, rehydrated through a graded series of ethanol. Pre-treated the sections by 0.2 mol/L HC1 for 20 rain at room temperature. Digested the sections by proteinase K (10 μg/ml) for 30 rain at 37°C. Then pre-hybridized the samples at 42°C for 2 h. Hybridization solution containing 2 μg/ml probe was subjected to hybridization at 42°C for 36 h. Then added anti-Dig antibody and incubated the samples for another 3 h. Hybridization buffer containing no probe served as negative control.

1.3 Immunohistochemistry

Mouse monoclonal antibody that recognizes the human P21WAF1/CIP1 protein was Santa Cruz product. StreptAvian-Biotin-enzyme Complex (SABC) kit was purchased from Boster Biotechnology Inc. (Wuhan, China). Briefly, 7 μm tissue sections were deparaffinized, rehydrated through a graded series of ethanol, and heated in 0.01 mol/L sodium citrate solution at 94°C—96°C for 10 min. The antibodies were diluted to 1:30. Representative tissue sections were immuno-labeled with PBS as a negative control for the immunohistochemistry.

1.4 PCR-SSCP Analysis

Genomic DNA was extracted from frozen tissues described above by sodium dodecylsulfate, proteinase K and phenol-chloroform treatments and stored at 4°C for future use. The Faculty of Pathology, Beijing Medical University synthesized the primers, by following procedures: Exon 5 5’-TAC TCC CCT GCC CTC AAC AAG A-3’ and 5’-CGC TAT CTG AGC AGC GCT GAT A-3’, the PCR product was 181bp in length; Exon 6 5’-GAT TGC TCT TAG TGC TGG CCC CTC CTC AGC-3’ and 5’-CAG ACC TCA GGC GGC TCA TAG G-3’, 132bp; Exon 7 5’-CTA GGT TGG CTC TGA CTG TAC CAC CAT CAT CC-3’ and 5’-TAG CCT GGA GTC TTC CAG TGT G-3’, 119bp; Exon 8 5’-GTA GTG GTA ATG TAC TGG GAC GGA ACA GA-3’ and 5’-CTC GCT TAG TGC TCC GGG GC-3’ 143bp. The PCR reaction mixture contained 0.1 μg—0.2 μg genomic DNA, 1.5 U of Tag DNA polymerase, 200 μmol/L each of dGTP, dATP, dCTP, dTTP, 5 μmol of each of oligonucleotide primer, MgCl2 1.5—3 μmol/L in a final volume of 50 μl. The first PCR cycle was performed at 95°C for 5 min to denature the DNA, at 55°C for 40 s to anneal the primer and at 72°C for 20 s to synthesize the DNA. The next 33 cycles were performed at 94°C for 60 s, 55°C for 40 s and 72°C for 20 s. The last cycle was at 94°C for 60 s, 55°C for 40 s and 72°C for 5 min. 5 μl of PCR products were examined to ensure that each sample was successfully amplified. After 5 μl of 1 mol/L NaOH was added into the remaining 45 μl products, the mixture was heated at 95°C for 5 min. Then the mixture was chilled in ice water for 5 min. 50 μl of SSCP loading mixture was added to each tube. The treated mixture was applied to the wells of 10% non-denatured polyacrylamide gel. Electrophoresis was performed at 50 V for 14—15 h at room temperature. The gel was fixed in 10% acetic acid for 10—12 h, washed in 30% acetic acid and distilled water for two times. Then the gel was put in silver staining solution (0.1% AgNO₃) for 30 min. Develop-