Energy Levels in 65Cu (*).

M. D. Hossain (**)

Department of Physics, University of Calabar - Calabar, Nigeria

(riccuto il 10 Luglio 1979; manoscritto revisionato ricevuto il 2 Ottobre 1980)

Summary. — The reaction 64Ni(p,γ)65Cu was studied in some detail, covering proton energies from 1.30 MeV to 4.100 MeV. Gamma-ray asymmetries were measured to assign spins and parities to resonance levels as well as to bound levels of 65Cu. The excitation energies as well as the spins and parities of the low-lying states in 65Cu were found to be in good agreement with the prediction of the weak-coupling model.

1. — Introduction.

In the recent past, a number of studies was made both theoretical (1-8) and experimental (9-11) on 65Cu. However, not much is known about the properties of the low-lying states of 65Cu experimentally. The main purpose of this paper

(*) Work done at the Nuclear Physics Laboratory, University of Oxford, England.
(**) Permanent address: Atomic Energy Centre, Dacca, Bangladesh.
is to report the properties of the low-lying states of 60Cu from a study of the 58Ni(p, γ)60Cu reaction. The intensities and energies of gamma-rays following proton capture in 58Ni were measured at different proton energies ranging from 1.300 MeV to 4.100 MeV. The asymmetries of prominent gamma-rays were measured to ascertain spins and parities of compound states as well as of bound states.

2. Experimental procedure.

All experiments were performed with proton beam from the 6 MeV Van de Graaff Accelerator at AERE, Harwell. The beam resolution was better than 1 keV, which enabled us to measure the excitation function in 1 keV steps. The beam was collimated by a number of tantalum collimators accompanied by lead shields. In order to minimize the deposition of impurities on the target surface during the experiment, a cold trap was inserted in between the target chamber and the last vacuum pump in the beam line (fig. 1).

![Diagram of beam line](image)

Fig. 1. - Sectional drawing of the beam line.

Targets were prepared from a 99.77% enriched 58Ni isotope obtained from AERE, evaporated in vacuum on the thick high-purity gold backings from a directly heated tungsten boat. Prior to evaporation the target blanks were etched in aqua regia. The process was found to be very effective in reducing the most persistent contaminant 19F. The mounted targets were cooled with compressed air.

For data collection two Ge(Li) detectors of approximately of equal size were used. The energy resolution of each detector was approximately 5 keV at the 1.33 MeV line of the 60Co source.

2'1. Relative detection efficiency of the two Ge(Li) detectors (12,13). - The detectors were mounted at fixed angles of 0° and 90° with respect to the proton