A note on the Asymptotic Generalised Variance for a Moving Average process

Summary

Relationships between the asymptotic generalised variance, of an \(r \)th order moving average process, and the ordinary variance, of an associated \(r \)th order autoregressive process, are established for \(r=1 \) and 2. This is extended to the case \(r=3 \), and a generalisation is suggested for all \(r>0 \), though this has not been checked beyond \(r=4 \).

Some key words: Moving average process, Autoregressive process, Invertibility, Autocovariance, Autocovariance matrix, Generalised variance, Autocorrelation.

1. Introduction

Consider the moving average process of order \(r \)

\[
Z_i = \sum_{j=0}^{r} \theta_j A_{i-j} \tag{1.1}
\]

with \(\theta_0 = 1 \); where the \(A_{i-j} \) are uncorrelated random variables, with zero mean and unit variance and all identically distributed. We will assume that (1.1) is invertible, which implies that the polynomial \(\sum_{j=0}^{r} \theta_j \zeta^j \), in the complex variable \(\zeta \), has all its zeros strictly outside the unit circle.

The autocovariance at lag \(\ell \), for (1.1), is defined by

\[
\gamma_{\ell} = \text{Cov}[Z_i, Z_{i-\ell}]
\]

which is independent of \(i \). In fact, for \(\ell \geq 0 \),

\[
\gamma_{\ell} = \sum_{j=0}^{r-\ell} \theta_j \theta_{j+\ell}.
\]

For any positive \(k \), the \(k \times k \) autocovariance matrix of (1.1) is defined as

\[
P_k = (p_{st})
\]
where

\[P_{st} = Y|s-t|. \]

We will denote the determinant of \(P_k \) by \(D_k \), which is the \(k \)th generalised variance, and define \(D_0 \) to be one.

Associated with (1.1) is an \(r \)th order autoregressive process

\[\sum_{j=0}^{r} \theta_j z_{i-j} = A_i \]

(1.2)

whose autocorrelation at lag \(\lambda \) is defined by

\[\rho_\lambda = \frac{\text{Cov}[Z_i, Z_{i-\lambda}]}{\text{Var}[Z_i]}. \]

Then \(\rho_0 = 1 \) and

\[
\begin{bmatrix}
\rho_1 \\
\vdots \\
\rho_r
\end{bmatrix} =
\begin{bmatrix}
1 & \rho_1 & \cdots & \rho_{r-1} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots \\
\rho_r & \cdots & \rho_1 & 1
\end{bmatrix}
\begin{bmatrix}
\theta_1 \\
\vdots \\
\theta_r
\end{bmatrix}
\]

and a sequence \(\{z_i\} \), following (1.2), has its variance given by

\[\nu_r = \left(\sum_{j=0}^{r} \rho_j \theta_j \right)^{-1}. \]

So, for instance,

\[\nu_1 = (1-\theta_1^2)^{-1} \]

(1.3)

\[\nu_2 = (1 + \theta_2)^2 - \theta_1^2 \left(\frac{1}{1 - \theta_2} \right) \]

(1.4)

Finally we introduce the shift operator \(B \), such that for any sequence of determinants, \(\{F_k\} \) say,

\[B^j F_k = F_{k-j} \]

for all integers \(j \).