The inspection paradox with random time

W. Herff, B. Jochems, U. Kamps

Received: May 2, 1995; revised version: September 4, 1995

When considering a delayed renewal process one may be interested in both, the renewal function and the expected length of the interarrival time that contains some fixed time t. In general, it is difficult to obtain explicit expressions for specific underlying distributions. Replacing t by a random variable T and using prior information about T, that is, assuming that T has some continuous NBU (NWU) distribution function G, bounds of the quantities are derived as well as representations, if T is exponentially distributed. As an implication an equation of Wald type is shown. The results can be applied to the analysis of control charts in quality control. Moreover, related bounds of a sample mean based on a random sample size are given and an elementary renewal reward theorem is stated.

Keywords: Delayed renewal process, renewal function, inspection paradox.

1. Introduction

In many practical situations, a renewal process serves as the basic statistical model. We refer to reliability theory, models in non-life insurance, queuing theory, inventory and traffic flow models.

Let $(S_n)_{n \in \mathbb{N}}$ be a delayed renewal process defined by

$$S_0 = 0, \quad S_n = \sum_{i=1}^{n} X_i, \quad n \in \mathbb{N},$$

with independent, nonnegative interarrival times and distribution functions

$$X_1 \sim F_1, \quad X_i \sim F, \quad i \geq 2, \quad F_1(0) < 1, \quad F(0) < 1.$$

Then $(N(t))_{t \geq 0}$ with $N(t) = \sup \{ n \in \mathbb{N}_0 : S_n \leq t \}$ denotes the corresponding renewal counting process.
In the above examples, \(X_i \) may describe, respectively, the life length of the \(i \)th component (i.e. the time between successive failures), the waiting time between two successive claims or the size of the \(i \)th claim, the interarrival time of two customers, the demand in the \(i \)th period, and the time between successive road users.

If we consider a common renewal process, i.e. \(F_1 = F \), and the interarrival time that contains some fixed time \(t \), namely \(X_{N(t)+1} \), then the well-known inspection paradox (e.g. Ross 1983a) yields that \(X_{N(t)+1} \) is stochastically larger than \(X_1 \)

\[
P(X_{N(t)+1} > x) \geq P(X_1 > x) \quad \text{for all } x \geq 0
\]

which implies

\[
E X_{N(t)+1} \geq E X_1.
\]

The survival function of \(X_{N(t)+1} \) is given by

\[
P(X_{N(t)+1} > x) = \begin{cases}
F(x) \left(1 + \frac{EN(t)}{F(t)} \right), & x > t \\
F(t) + \int_0^{t-x} \frac{1}{F(t-s)} dEN(s) + F(x) \left(\frac{1}{EN(t)} - \frac{1}{EN(t-x)} \right), & x \leq t
\end{cases}
\]

Hence, explicit expressions of \(E X_{N(t)+1} \) are available for some particular distributions only.

When inspecting the underlying renewal process at time \(t \), we are usually interested in the expected length of the present interarrival time and in the expected number of renewals, claims, customers, etc. up to time \(t \). In practice, inspections may happen at random or they are supposed to be random. Thus, in order to appraise the values of the above quantities, the fixed time \(t \) has to be replaced by a random time \(T \). We suppose to have prior information about the distribution of \(T \):

\[
Let \(T \) be a nonnegative random variable with some continuous distribution function \(G \), \(G(x) < 1 \) for all \(x > 0 \), which is independent of the interarrival times \((X_i)_{i \in \mathbb{N}} \).
\]

Obviously, the inequalities (1.1) and (1.2) remain to hold true with \(t \) replaced by \(T \). Moreover, \(G \) is assumed to be NBU (or NWU) which means that

\[
G(x + y) \leq (\geq) \ G(x) \cdot G(y) \quad \text{for all } x,y \geq 0.
\]