THE KUNZE-STEIN PHENOMENON

(Conferenza tenuta il 20 febbraio 1976)

SUNTO. — Si dà una nuova dimostrazione di un teorema di Kunze e Stein, che dice che, se $1 \leq p < 2$, $L^p(SL(2, R)) \ast L^q(SL(2, R))$ è contenuto in $L^q(SL(2, R))$. Questa nuova dimostrazione può essere generalizzata per provare lo stesso teorema per ogni gruppo di Lie connesso, semisemplice, col centro finito.

INTRODUCTION. - Let G be a locally compact group with left Haar measure m; $L^p(G)$ denotes the usual Lebesgue space relative to this measure. We write $u \ast v$ for the convolution of the functions u and v on G, defined thus:

$$u \ast v(g') = \int_G d m(g) \ u(g'g) \ v(g^{-1}) \ g' \in G.$$

It is well known that $L^1(G) \ast L^2(G) \subseteq L^2(G)$ and

$$\|u \ast v\|_2 \leq \|u\|_1 \ \|v\|_2$$

for u and v in $L^1(G)$ and $L^2(G)$ respectively; if G is compact, then $L^p(G) \subseteq L^1(G)$ for all p greater than one, so in this case, $L^p(G) \ast L^q(G) \subseteq L^2(G)$. But if G is abelian, or, more generally, amenable and noncompact, then $L^p(G) \ast L^q(G) \subseteq L^2(G)$ only if $p = 1$. The following result therefore comes as a surprise.

THEOREM. - Let G be a connected semisimple Lie group with finite center. If $1 \leq p < 2$, then $L^p(G) \ast L^q(G) \subseteq L^2(G)$.

This theorem is in fact already known in some special cases. Many years ago, R. A. Kunze and E. M. Stein proved it for $SL(2, R)$ [4]. More recently, R. L. Lipsman [5], [6], [7] treated the groups $SO_o(n, 1)$ and $SL(n, C)$. Then Stein [8] tackled the complex classical groups, i.e. $SL(n, C)$, $SU(p, q)$, and $Sp(n, C)$, but was unable
to manage the group G_2 using his methods. For a converse and related results, the reader is referred to Appendix 1 of the paper [2] of the author and J. J. F. Fournier.

Here we shall give a new proof for the case where G is $SL(2, R)$ and indicate how it differs from that of Kunze and Stein, and, at the end, discuss very briefly the general case. The general case will be proved in detail elsewhere.

The Proof for $SL(2, R)$. - Now we write G for $SL(2, R)$; every element g of this group is a matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

of real numbers of determinant one. The fractional linear transformation $r \mapsto g(r)$ is defined by the formula:

$$g(r) = \frac{ar + c}{br + d} \quad r \in R;$$

its modulus $dg(r)/dr$ is given by the formula

$$\frac{dg(r)}{dr} = |br + d|^{-2}.$$

The class-one principal series of G is the set of representations π_z, where z is a complex number, which act on the space of measurable functions on R (strictly speaking, classes of measurable complex-valued functions defined almost everywhere) according to the rule

$$\pi_z(g) \xi(r) = |br + d|^{-1-z} \xi(g(r)) \quad r \in R.$$

It is easily checked that π_z acts isometrically on $L^q(R)$ when

$$q \cdot \text{Re}(z) = (2 - q).$$

For the images under π_z of two functions equal almost everywhere are equal almost everywhere, and

$$\int_R dr |\pi_z(g) \xi(r)|^q = \int_R dr |br + d|^{-2} |\xi(g(r))|^q$$

$$= \int_R dg(r) |\xi(g(r))|^q.$$