Study on Allergic Rhinitis in Workers Exposed to Methyltetrahydrophthalic Anhydride

*~ Matsushita Science Center of Industrial Hygiene, Kadoma
** Department of Hygiene and Preventive Medicine, Osaka University School of Medicine, Suita

Abstract

Methyltetrahydrophthalic anhydride (MTHPA) is used as a hardening agent in an epoxy resin system. Because work-related nasal symptoms were observed in some workers exposed to MTHPA at two condenser plants, a cross-sectional survey was performed to improve their work environment. Mean MTHPA levels in the manufacturing processes to which the workers were routinely assigned were extremely low (1.09-22.4 µg/m³). However, specific IgE antibody (S-IgE) was detected in 9 (32%) of 28 workers. Of these, 8 (89%) had nasal symptoms. An IgE-mediated mechanism seems to be associated with at least some of the cases of work-related nasal symptoms. This indicates that the occupational health administration of MTHPA cannot be controlled simply by limiting exposure in the work environment. Total IgE (T-IgE) levels were significantly higher in S-IgE-positive workers than in S-IgE-negative workers (geometric mean, 200.5 and 51.3 IU/ml, respectively; p<0.002, unpaired t test). These findings demonstrate that workers in whom S-IgE is less likely to be produced, i.e., those in whom the T-IgE level is 80 IU/ml or less, should be assigned to work in these manufacturing processes.

Key words: Allergic rhinitis, Methyltetrahydrophthalic anhydride, Specific IgE, Specific IgG4, Total IgE

Introduction

Epoxy resin hardening agents, which cause contact dermatitis, are among the allergens frequently found in the industrial environment 1. In 1976, the Labor Ministry of Japan issued Notification No.442, "Prevention of health hazards due to epoxy resin hardening agents". As a result of this notification, a shift from highly toxic amine compounds to less toxic acid anhydrides was made. However, acid anhydrides have also been known to cause allergic symptoms; specific IgE antibody was detected in patients with occupationally incurred asthma at a plastics plant for the first time in 1976 2.

Methyltetrahydrophthalic anhydride (MTHPA) is used as a hardening agent in an epoxy resin system for electric insulation and protection in the manufacturing of condensers. Some workers at two plants engaged in the manufacturing process had work-related nasal symptoms (sneezing, secretion, and blockage). Because exposure to MTHPA has been associated with work-related nasal symptoms 3, we examined the relationship of MTHPA exposure to these symptoms in a group of 28 workers in these plants in June and July 1994.

Material and methods

Plants and subjects. In the two condenser plants investigated, the manufacturing process consisted of soaking and hardening (100 °C; Zone 1), powder coating (Zone 2), cutting (Zone 3), and finishing (Zone 4). The zones were separated by a partition and doors to prevent contamination by the MTHPA vapor generated in Zone 1. Twenty-five workers (all male; mean age, 31 years; range, 19-50) at the plants had a median work experience of 4 years (range, 0.25-14). Nine of the 25 workers were routinely assigned to monitoring work in Zone 3, and 16 in Zone 4. Nonroutine operations included cleaning of the MTHPA soaking bath (2-5 times/week, about 90 min each time; rubber gloves and a gas mask were worn). Sixteen of the 25 workers were assigned to cleaning. Three former workers (all male; mean age, 42 years; range, 30-57), who had a median work experience of 4 years (range, 3-5) in Zone 3 or Zone 4 of one of the plants, were included in the study. These men had been out of exposure for a median 7 years (range, 5-20) and develop nasal symptoms even
today when they participate in these processes for 10-30 min.

Work-related nasal symptoms. The subjects completed a simple questionnaire about their ocular and nasal symptoms. Nasal symptoms were defined as attacks of sneezing, secretion, and blockage, with recovery either on weekends or on holidays, that started after joining the plant. A physician (KY) took a brief medical history concerning the symptoms and their relation to work.

Air sampling and analysis. MTHPA levels in air were determined by area sampling on silica gel tubes, and the anhydride was analyzed by gas chromatography\(^6\). The detection limit was 1.0 \(\mu g/m^3\) in a 20-1 air sample. MTHPA levels in air have been measured in these plants every 6 months since 1993.

Antibody determinations. MTHPA conjugate was prepared by the method of Welinder et al\(^7\). The molar ratio of human serum albumin (HSA) to MTHPA in the conjugate was 1:18-22\(^8\). Specific IgE antibody (S-IgE) to the conjugate was measured with a Pharmacia CAP system (Pharmacia Diagnostics AB, Uppsala, Sweden). The results were expressed as U/ml and the detection limit was 0.35 U/ml. Specific IgG4 antibody (S-IgG4) to the conjugate was analyzed by the ELA assay (Vector Laboratories Inc., Burlingame, CA, USA)\(^9\). The results were expressed as the absorbance value. Total IgE (T-IgE) levels were measured by the CAP system according to the manufacturer's instructions.

Statistical methods. For comparison of the difference in T-IgE between the S-IgE-negative and S-IgE-positive groups, the unpaired t test was used on log-transformed values.

Results

In the two plants, the mean MTHPA level was highest in Zone 1 (762-988 \(\mu g/m^3\)), followed by Zone 2 (43.1-175 \(\mu g/m^3\)), Zone 3 (1.09-22.4 \(\mu g/m^3\)), and Zone 4 (1.29-11.5 \(\mu g/m^3\)); thus, the level decreased with increasing distance from the source of MTHPA.

As shown in Table 1, S-IgE was positive in 9 (32%) of the 28 subjects. Three of these 9 subjects had nasal and ocular symptoms, and 5 had nasal symptoms. The S-IgE-positive group had a geometric mean of 3.66 U/ml (range, 0.49-10.9 U/ml).

Total IgE levels in S-IgE-negative group were low (geometric mean, 51.3; range, 9.30-376 U/ml), whereas most of the subjects in the S-IgE-positive group had T-IgE levels of >80 IU/ml (geometric mean, 200.5; range, 70.2-463 IU/ml). The difference between the T-IgE levels in the two groups was highly significant \((p<0.002)\) (Fig 1).

Table 1. Relationships between specific antibodies and nasal symptoms.

<table>
<thead>
<tr>
<th></th>
<th>S-IgE*</th>
<th>S-IgG4#</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS (n=8)</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>SN (n=1)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NS (n=2)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NN (n=17)</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

*: S-IgE level >0.35 U/ml
: S-IgG4 was defined as positive if the level exceeded \(2 \times \) (Mean+3SD) in controls, i.e. 0.020. Ten medical students (all males) served as controls.

Discussion

MTHPA has irritating effects on the mucous membranes and has sensitizing properties, causing symptoms in the eyes and airways\(^3\). In a nasal challenge test, the association of the S-IgE antibody against MTHPA-HSA with work-related nasal symptoms has been reported\(^10\). Even if allergic rhinitis is not considered to be as serious as asthma, it can be troublesome for many workers. Moreover, allergic rhinitis may precede occupationally incurred asthma\(^4\). Thus, it is important to clarify whether allergic mechanisms are involved in work-related nasal symptoms. This study aimed to investigate the contribution of MTHPA exposure to work-related nasal symptoms in a Japanese occupational population.

The mean MTHPA levels in Zone 3 and Zone 4, where the workers were engaged in monitoring operations, were slightly lower than those reported in Sweden (10-85 \(\mu g/m^3\))\(^5\). However, the frequency of positive S-IgE in the workers being currently exposed was 6 of 25 (24%), slightly higher than that in Sweden (18%)\(^5\). The workers engaged in cleaning the soaking bath, in which a high level of exposure to MTHPA is expected, wore gas masks and rubber gloves for protection from the acetone used in washing. Therefore, the actual level of exposure is considered to be negligible, although confirmation by biological monitoring\(^11\) is needed.

The relationships between S-IgE and nasal symptoms are shown in Table 1. In the IgE-sensitized symptomatic group (SS) and the IgE-nonsensitized nonsymptomatic group (NN), the presence or absence of nasal symptoms agreed completely with the presence or absence of S-IgE. This indicated that there was an IgE-mediated mechanism in at least some of the cases of work-related nasal symptoms associated with MTHPA exposure. Our results are considerably different from those of another study, in which no significant differences were found for ocular and nasal symptoms between IgE-sensitized and unsensitized subjects\(^12\).