On Hecke Eigenforms of Degree n

By S. BREULMANN and W. KOHNEN

1 Introduction and statement of result

Let $S_k(\Gamma_n)$ be the complex vector space of Siegel cusp forms of weight $k \in \mathbb{Z}$ with respect to the Siegel modular group $\Gamma_n := \text{Sp}(n; \mathbb{Z})$ ($n \in \mathbb{N}$). For $F \in S_k(\Gamma_n)$ we denote by $a(T)$ (T a half-integral, positive definite n-rowed matrix) the Fourier coefficients of F. If $F \in S_k(\Gamma_n)$ is a Hecke eigenform, we let

$$Z_F(s) := \prod_p Z_{F,p}(p^{-s})^{-1} \quad (\text{Re } s > 0)$$

be the spinor zeta function of F, where

$$Z_{F,p}(Y) = (1 - \alpha_{p,0} Y) \prod_{1 \leq i_1 < \cdots < i_j \leq n} \left(1 - \alpha_{p,0} \alpha_{p,i_1} \cdots \alpha_{p,i_j} Y \right)$$

is the local spinor polynomial and $\alpha_{p,0}, \ldots, \alpha_{p,n}$ are the Satake p-parameters of F. It is conjectured that $Z_F(s)$ (completed with Γ-factors) can be meromorphically continued to the whole complex plane and satisfies a functional equation with respect to $s \mapsto nk - \frac{n(n+1)}{2} + 1 - s$. This is only known for $n \leq 2$ (cf. [1]).

The purpose of this paper is to show the following

Theorem. Let $n \geq 3$ and $F, G \in S_k(\Gamma_n)$ be two Hecke eigenforms with Fourier coefficients $a(T)$ and $b(T)$, respectively. Suppose that $Z_F(s)$ and $Z_G(s)$ have a meromorphic continuation to \mathbb{C} and satisfy the conjectured functional equation. Suppose that $a(mT) = b(mT)$ for every primitive matrix T and every $m \in \mathbb{N}$ with $v_p(m) \leq 2^n - 2$ for every prime p, where $v_p(m)$ denotes the usual p-adic exponent of m. Then $F = G$.

The above theorem is a generalization of an analogous result in the case $n = 2$ (cf. [2]). Note that in this case the exponent of m can be improved to be one. Also, as mentioned above, no additional information on the spinor zeta functions of F and G is needed.

1991 Mathematics Subject Classification. 11F46.
Remark. H. KATSURADA kindly informed the authors that in his paper "On the coincidence of Hecke eigenforms" (appeared in this volume, pp. 77–83) he has proved the same result as given in [2] for $n = 2$ for arbitrary $n \geq 2$. No unproved hypothesis for spinor zeta functions is needed there.

2 Proof of theorem

The proof essentially follows the same pattern as the one given in [2]. In addition, however, we have to make use of relations given by ŽARKOVSKAJA between eigenvalues and Fourier coefficients for arbitrary n ([9]). We also make use of (part of) the converse theorem for arbitrary n due to WEISSAUER (cf. [7], [8]).

Lemma 1. Let $F \in S_k(\Gamma_n) \setminus \{0\}$ with Fourier coefficients $a(T)$. Then there exists a Groessen character φ on $\text{SL}(n; \mathbb{R})$ (in the sense of Maaß) such that the twisted Maaß–Koecher series

$$D_{F,\varphi}(s) := \sum_{T > 0/\sim} \frac{a(T)\varphi((\det T)^{-1/n} T)}{\epsilon(T) \det(T)^s} \quad (\text{Re } s \gg 0)$$

does not vanish identically (the sum extends over a complete system of representatives of $\text{SL}(n; \mathbb{Z})$-classes of half-integral, positive definite matrices T and $\epsilon(T) := \sharp\{U \in \text{SL}(n; \mathbb{Z}) : U^t TU = T\}$).

Proof. [7], cf. also [8]. \qed

Lemma 2. Let $F, G \in S_k(\Gamma_n)$ be two Hecke eigenforms with Fourier coefficients $a(T)$ resp. $b(T)$. Let N be a fixed n-rowed half-integral, positive definite matrix and suppose that $a(mN) = b(mN)$ for every $m \in \mathbb{N}$ with $v_p(m) \leq 2^n - 2$ for every prime p. Then

$$Z_F^{-1}(s) \sum_{m=1}^{\infty} \frac{a(mN)}{m^s} = Z_G^{-1}(s) \sum_{m=1}^{\infty} \frac{b(mN)}{m^s} \quad (\text{Re } s \gg 0).$$

Proof. Let

$$Q(X_0, X_1, \ldots, X_n, Y) = (1 - X_0 Y) \prod_{1 \leq i_1 < \cdots < i_j \leq n} (1 - X_0 X_{i_1} \cdots X_{i_j} Y)$$

be the local spinor polynomial, viewed as an element of $\mathbb{C}[X_0^\pm, \ldots, X_n^\pm]^{W_n}[Y]$ where W_n is the Weyl group. For a fixed prime p the local Hecke-Algebra L_p^n may be identified with $\mathbb{C}[X_0^\pm, \ldots, X_n^\pm]^{W_n}$ via the following isomorphism (cf. [4], p. 258, note the different normalization), given on the generators of L_p^n ([4], p. 250)