The conclusions to be drawn from these statistics are—firstly; that the number of failures taken on the whole is much less than one would have expected. In 4,329 uncomplicated cases, the failures were 6.88 per cent., while in 11,012 cases of all kinds the failures were only 6.9 per cent.; secondly, as it is highly improbable that too high a figure has been given for the failures in any of the tables, we may conclude that an operator must expect to lose 7 out of every 100 of his cases.

It might at first sight seem that we should also conclude that 7 per cent. even of the uncomplicated cases will result in failure. I myself have hitherto lost 8 per cent. of such cases; but I believe that at least five-sixths of the failures in these cases are due to preventable causes. If I had to repeat the operations in my cases which have turned out badly, I believe, with my present experience, the results would be successful, and I cannot but think that many other operators would feel the same thing about their unsuccessful cases.

The more carefully we study all the various conditions which influence the success of our operations, the more exactly we map out the primary incision so as to give the freest possible exit to the lens, without exercising undue pressure on the ocular tissues on the one hand, or leaving too large a wound to undergo the process of repair on the other hand; and the more closely we attend to the perfect cleanliness of all the instruments and bandages, if we do not actually adopt some form of antisepticism, the sooner shall we reduce the present 7 per cent. of losses to nil.

I am aware that some operators, notably Horner of Zurich, and Wecker of Paris, have already reached a far higher percentage of success than what the tables given above exhibit, and this gives us additional grounds for hoping that what they have accomplished can also be attained by others, if the latter can bring to the work equal skill and equal care.

Art. IV.—Vascular Hydrosis as a Prophylactic to Poisonous Absorption. By Leslie Maturin, L.K.Q.C.P.; L.R.C.S.I.; late Surgeon to the Red Cross Society in the Russo-Turkish War, 1877-78.

Absorption, we are aware, is effected through the medium of the veins, lymphatics, and lacteals, and the materials absorbed through these channels, entering the circulation, are carried in its current to every part of the body. Collaterally with absorption and deposi-
tion, the human frame is incessantly undergoing destruction, the effete materials being removed from the system by means of the bowels, kidneys, and skin. In youth, deposition being in excess of destruction, there is growth; in adult age both processes are evenly balanced; in old age, waste exceeding repair, decay, and subsequently death, ensue. In starvation the body is self-absorbent, hence emaciation. As a consequence of fever, rapid disintegration and absorption of the tissues takes place, and excretion not being effected in the same ratio, increase of temperature and other consequences are the result. Experiments have illustrated, and experience confirmed, the theory that absorption takes place much more rapidly after the body has sustained a loss of blood. Witness the increased susceptibility to puerperal septicemia when preceded by uterine haemorrhage. Irrespective of the quality, there is a want of a certain quantity of fluid to enable the ventricles to perform their rhythmical contractions. In such cases increased absorption takes place to supply the deficiency, and by means of it the poisonous materials are conveyed into the circulation, with their too-often fatal consequences.

It is by this last-mentioned fact that I am led to the consideration that if it be true (as undoubtedly it is), why should not the converse theory obtain also—viz., that in repletion of the circulation absorption should take place in an inverse ratio? Fill a bladder with water, and a charged syringe introduced into an opening can inject no more fluid into it—in other words, is it possible to induce rapidly such a condition of fulness of the circulation as to render it temporarily incapable of receiving anything through the channels of absorption? In cholera, where the aqueous portion of the blood is diminished by excessive purging—in haemorrhages, where the blood is deficient in quantity, do we not raise it to its requisite standard of bulk, at least, by the injection of fluids, frequently with beneficial, and never (when the operation is properly performed) with any evil, results. I believe this practice could be usefully and speedily applied in many cases where, despite the use of antidotes, cauterisation, hypodermic injections, diaphoretics and purgatives, patients succumb to the poisonous absorption of snake and dog bite, dissecting wounds, and vegetable and mineral poisons taken internally.

The object to be attained is to localise the poison by rendering the blood-vessels temporarily incapable of receiving the products of absorption, affording time in the interim for local treatment.