On Optimum Balancing Between Sample Size and Number of Strata in Sub-Sampling

By Yasushi Taga

(Received January 5, 1953)

1. As to the effects of stratification in sampling procedure there are various arguments made to the single-stage sampling procedure, but it seems to me, that there are few to the sub-sampling procedure. In this article we shall give the limits of effects of stratifications in sub-sampling to some special cases and show how to determine optimally sample-size and number of strata. The results will be of service to the treatment of the general case.

2. Given a population \(\pi \), divide it into \(R \) strata and draw a sample of size \(n \) from \(\pi \) by the sampling method with probabilities proportionate to sizes of the primary sampling units. Then the variance of the sample mean \(\bar{x} \) is represented approximately as follows

\[
\sigma_s^2 = \sum_{i=1}^{R} \pi_i \left(\frac{\sigma_{wi}^2}{n_i} + \sigma_{bi}^2 \right)
\]

where \(n_i, \pi_i, \sigma_{wi}^2, \sigma_{bi}^2 \) are the sample-size, the weight of the \(i \)-th stratum, the within-and between-variance in the \(i \)-th stratum respectively. Further, assume that the sample is allocated to every stratum proportionately to its size.\(^*\) Then the variance of \(\bar{x} \) becomes

\[
\sigma_s^2 = \frac{1}{n} \sum_{i=1}^{R} \pi_i \sigma_{wi}^2 + \sum_{i=1}^{R} \pi_i^2 \sigma_{bi}^2
\]

where

\[
\sigma_{wi}^2 = \sum_{j=1}^{N_i} \frac{N_{ij}}{N_i} \sigma_{ij}^2
\]

\[
\sigma_{bi}^2 = \sum_{j=1}^{N_i} \frac{N_{ij}}{N_i} (\bar{X}_{ij} - \bar{X}_i)^2
\]

\[
\sigma_{ij} = \frac{1}{N_{ijk}} \sum_{k=1}^{N_{ijk}} (X_{ijk} - \bar{X}_{ij})^2
\]

\[
\bar{X}_i = \frac{1}{N_i} \sum_{j=1}^{N_i} X_{ij}
\]

\(^*\) This method (size proportionate allocation) is often used in practical surveys, for the benefit of counting and analysis. Therefore this limitation will not be so serious.
\[X_{ij} = \frac{1}{N_i} \sum_{k=1}^{N_i} X_{ikj} \]

\(X_{ikj} \): the attribute of the \(k \)-th secondary sampling unit of the
\(j \)-th primary sampling unit in the \(i \)-th stratum.

Since \(\frac{N_j}{N} = P_j \), \(\sigma^2 \) becomes

\[\sigma^2 = \frac{1}{n} \sigma^2_{m^2} + \sum_{i=1}^{R} \left(\frac{N_i}{N} \right)^2 \sigma_{ij}^2 \]

(6)

where \(\sigma^2 \) denotes \(\sum_{i=1}^{R} \sum_{j=1}^{N_i} \frac{N_i}{N} \sigma_{ij}^2 \).

Once primary sampling units are determined, the first term of this expression depends only on the sample size \(n \) and the second term only on the method of stratification. Therefore, stratification has the effects only to the control of between-variances \(\sigma_{ij}^2 \)'s. Now, we introduce the distribution function \(F(x) \) of means \(\bar{X}_{ij} \) of the primary sampling units, which is given by considering for every \(\bar{X}_{ij} \) the weight \(\frac{N_j}{N} \). Now, for brevity we confine ourselves to the case where a ratio of individuals having some characteristic in \(\pi \) should be estimated. The general case will be similarly treated.

\[\sigma^2_{m^2} = \int_{0}^{1} x(1-x)dF(x) = \bar{X}(1 - \bar{X}) - \sigma^2 \]

where

\[\bar{X} = \int_{0}^{1} xdF(x) \]

is the population mean

and

\[\sigma^2 = \int_{0}^{1} (x - \bar{X})^2dF(x) \]

is the variance between primary sampling units in the whole population.

And the variance between the primary sampling units in the \(i \)-th stratum is:

\[\sigma_{ij}^2 = \int_{I_i} (x - \bar{X}_i)^2dF_i(x) \]

\[= \int_{I_i} x^2dF_i(x) - \bar{X}_i^2 \]

where \(I_i \) is the interval or the set of intervals, representing the \(i \)-th stratum in the line of real numbers, \(F_i(x) = F(x)/p_i \), and \(\bar{X}_i = \int_{I_i} xdF_i(x) \) is the population mean of the \(i \)-th stratum.

Substituting these relations into the formula (6), we have.