On Stochastically Perturbed Differential Systems.

DANIELA ZAHARIE (*)

SUNTO - Si dimostra un risultato relativo all’esistenza globale e alla unicità traiettoria per traiettoria delle soluzioni del sistema differenziale stocastico di Itô. Le condizioni sufficienti che vengono proposte migliorano dei risultati di Taniguchi [5] e Constantin [1].

ABSTRACT - We give a result which refers to the global existence and pathwise uniqueness of solutions of Itô stochastic differential systems. The sufficient conditions we propose improve some results of Taniguchi [5] and Constantin [1].

1. - Introduction.

Let \((\Omega, \mathcal{A}, P)\) be a complete probability space and let \(\{\mathcal{A}_t, t \geq 0\}\) be a family of complete \(\sigma\)-subalgebras of \(\mathcal{A}\) satisfying \(\mathcal{A}_s \subset \mathcal{A}_t\) if \(0 \leq s < t\). Let \(W(t), t \geq 0\) be a \(\mathbb{R}^m\)-valued Brownian motion defined on \((\Omega, \mathcal{A}, P)\) with respect to the family \(\{\mathcal{A}_t, t \geq 0\}\).

We consider the Itô stochastic differential system with initial condition

\[
\begin{align*}
(1) \quad dX(t) &= F(t, X(t)) \, dt + G(t, X(t)) \, dW(t), \\
(2) \quad X(t_0) &= X_0,
\end{align*}
\]

(*) Indirizzo dell’autrice: Faculty of Mathematics, West University of Timișoara, bv. V. Pârvan, no. 4, 1900 Timișoara, Romania.

AMS Subject Classification (1991): 60H10.
with \(F \in \mathcal{C}(R_+ \times R^n, R^n) \) and \(G \in \mathcal{C}(R_+ \times R^n, R^m) \) and \(X_0 \) a \(\mathcal{C}_0 \)-measurable \(R^n \) valued function, independent of the Brownian motion \(W(t), t \geq t_0 \), and which verifies \(E\|X_0\|^2 < \infty \).

A solution \(X(t) \) of (1) is a random process defined for \(t \in [t_0, t_0 + \varepsilon] \), such that \(X(t) \) is \(\mathcal{C}_0 \)-measurable, is sample continuous, for some \(\varepsilon > 0 \) verifies

\[
\int_{t_0}^{t_0 + \varepsilon} (\|F(s, X(s))\|^2 + \|G((s, X(s))\|^2) \, ds < \infty \quad a.e.
\]

and satisfies (1). By uniqueness we mean pathwise uniqueness, i.e. if \(X_1(t) \) and \(X_2(t) \) are two solutions of (1) defined on \([t_0, t_0 + \varepsilon]\) and satisfying the same initial condition (2), then

\[
P\left(\sup_{t_0 \leq t \leq t_0 + \varepsilon} \{|X_1(t) - X_2(t)|\} = 0 \right) = 1.
\]

There exist many results related with the existence and the uniqueness of the solutions of (1). The classical sufficient conditions proposed by Itô were improved by Yamada [7]. Taniguchi [5] extended the results of Yamada proposing the following sufficient conditions for existence and uniqueness:

\[
(T1) \quad \|F(\cdot, 0)\| \in L^2_{\text{loc}}(R_+, R_+) \quad \text{and} \quad \|G(\cdot, 0)\| \in L^2_{\text{loc}}(R_+, R_+);
\]

\[
(T2) \quad \|F(t, x) - F(t, y)\|^2 + \|G(t, x) - G(t, y)\|^2 \leq b(t) f(\|x - y\|^2),
\]

for all \(x, y \in R^n \) where \(b \in \mathcal{C}(R_+, R_+) \) and \(f \in \mathcal{C}(R_+, R_+) \) is a monotone non-decreasing, concave function which satisfy \(f(0) = 0 \) and

\[
\lim_{r \to 0} \int_0^1 \frac{ds}{f(s)} = \infty.
\]

Although this result is very general, in perturbation problem is it is important to have separate conditions on the terms \(F \) and \(G \). Especially interesting is the following problem. Let us take the ordinary differential equation

\[
x' = F(t, x)
\]

with \(F \) satisfying (T1) and (T2) (so that we have uniqueness of solutions) and consider the stochastically perturbed equation (1). Under what conditions on \(G \) are have pathwise uniqueness for the solutions of (1)?