THE EVOLUTION, DISSEMINATION AND CLASSIFICATION OF Cocos nucifera L.

H. C. Harries
Coconut Industry Board, Jamaica

Introduction ... 266
Evolution by Natural Selection 268
Dissemination by Floating ... 270
Selection under Cultivation ... 272
 Fruit Number, Fruit Size and Fruit Components 272
 Fruit Shape and Nut Shape .. 273
 Germination .. 274
Windstorm Tolerance and Disease Resistance 275
Minor Factors and Dwarf Habit 276
Dissemination by Man .. 277
 Pacific and Indian Oceans 277
 The Western Hemisphere ... 280
 Agriculture, Commerce and Industry 281
Classification .. 283
 Present Classification Systems 283
 Classification Criteria ... 285
 Geographical Distribution .. 287
 Dwarf Varieties .. 297
Fruit Size and Fruit Number ... 301
Discussion .. 302
Summary ... 305
Acknowledgments ... 306
Appendix A: Fruit Component Analysis pro-forma 307
Appendix B: Fruit Component Analysis Data 308
Literature Cited .. 315

© The New York Botanical Garden 1979

265
INTRODUCTION

I know of no field of Tropical Agriculture that is so promising at the present moment as coco-nut planting, and I do not think in the whole world there is promise of so lucrative an investment of time and money as in this industry.

SIR W. H. LEVER (later LORD LEVERHULME), 1912

The danger of substitution of products or of the source of supply has very much darkened the future of the coconut economy of Asia.

UNITED NATIONS, The Coconut Industry of Asia, 1969

The coconut palm, *Cocos nucifera* L., was first grown as a plantation crop in the 1840's (Child, 1974). The industrial process for making soap, patented in 1841, required a cheap source of oil. Coconut oil, from copra (the dried endosperm of the nut), provided it. Coconut cultivation needs a small labour force and provides year-round work. A change to coconut production suited many sugar plantations when the high and seasonal labour demands of that crop could no longer be met in the decade following the abolition of slavery. The development of dynamite from nitroglycerine between 1846 and 1867 had the remarkable effect of turning a once discarded by-product of soap manufacture, glycerine, into the more profitable side of the business (Anonymous, 1912). Coconut oil also replaced animal fat in the manufacture of margarine (patented in 1896). To the industrial and political empire builders coconut was a cheap source of raw material and of war material (Alcazar, 1941). The 'coconut cult' and 'coconut boom' were features of the stock market in the early years of the 20th century (Smith and Pape, 1912). Coconut plantations were established throughout the tropics, wherever conditions were suitable, and often where they were not. Even the possibility of growing coconuts in California was considered.

The importance of the coconut at the time of the First World War was clearly demonstrated when the German territories in Africa and the Pacific, with their extensive plantations, were taken as reparation. As a result, Japan administered the Caroline, Marianna and Marshall Islands. To these they added, in 1942, other important coconut growing countries. Indonesia and the Philippines together accounted for more than fifty percent of the world supply of copra: Indo-China, Malaya, Borneo, New Guinea, the Solomons and the Gilbert Islands for a further twenty-five percent (estimated from data in Patel, 1938). Deprived of access to so much coconut oil, European interest centered on the African oil palm, *Elaeis guineensis* Jacq., whilst in the USA other oil crops were developed. It is no coincidence that a germplasm bank for soybean, *Glycine max* (L.) Merr., was established by the USDA in the 1940's (Hymowitz, 1976). By the end of the Second World War, when nuclear weapons displaced high explosives, the strategic importance of the coconut