ON THE BEST APPROXIMATION OF FUNCTIONS OF \(n \) VARIABLES

N. P. Korneichuk

We propose a new approach to the solution of the problem of the best approximation by a certain subspace for functions of \(n \) variables determined by restrictions imposed on the modulus of continuity of certain partial derivatives. This approach is based on the duality theorem and on the representation of a function as a countable sum of simple functions.

1. Introduction and the Duality Theorem

We do not present here the theory of the problem because it would take too much space; we only recall scientists whose results concerning the approximation in the multidimensional case are well known: Nikol’skii, Temlyakov, Bugrov, Potapov, Babenko, Galeev, Din Zung, et al.

In the present paper, we propose a new approach that enables us, in certain cases, to obtain exact results for periodic functions of \(n \) variables concerning the estimation of the best approximation by a subspace. We start from the following statement, which is called the duality theorem for the best approximation [1] (see also, e.g., [2, p. 113]):

Theorem A. Suppose that \(X \) is a liner normed space, \(X^* \) is the space dual to \(X \), and \(F \) is a subspace of \(X \). For any \(x \in X \setminus F \), we have

\[
E(x, F) := \inf_{u \in F} \| x - u \| = \sup_{f(x) \in X^*} \{ f(x) : f \in X^*, \| f \| \leq 1, f(u) = 0 \ \forall u \in F \}.
\]

In Theorem A, let \(X \) be the space \(L_{n,p}, \ 1 \leq p \leq \infty \), of functions \(f(\bar{x}) = f(x_1, x_2, \ldots, x_n) \) \(2\pi \)-periodic in each variable with the ordinary norm

\[
\| f \|_{L_{n,p}} = \| f \|_{L_{n,p}} = \begin{cases} \left(\frac{2\pi}{0} \int |f(\bar{x})|^p \, d\bar{x} \right)^{1/p}, & 1 \leq p < \infty; \\ \sup_{\bar{x}} |f(\bar{x})|, & p = \infty. \end{cases}
\]

Taking into account the general form of a linear functional in the space \(L_{n,p}, \ p \geq 1 \) (see, e.g., [3, p. 196]), and Proposition 1.4.2 in [4, p. 26], which is obviously true in the \(n \)-dimensional case as well, the statement of Theorem A, i.e., relation (1), can be represented for \(\bar{x}(t) \in L_{n,p} \setminus F \) as follows:

\[
E(x, F)_p = \sup \left\{ \int_0^{2\pi} x(\bar{r})h(\bar{r}) \, d\bar{r} : h \in L_{n,p'}, \| h \|_{p'} \leq 1, \ \int_0^{2\pi} u(\bar{r})h(\bar{r}) \, d\bar{r} = 0 \ \forall u(\bar{r}) \in F \right\},
\]

\[
1 \leq p < \infty, \ 1/p + 1/p' = 1.
\]

Note that, for \(p = \infty \), equality (2) is valid at least for finite-dimensional subspaces \(F \) [1; 4, p. 26].
2. Modulus of Continuity

In the one-dimensional case, the modulus of continuity \(\omega(f, \delta) \) of a function \(f(t) \in C[a, b] \) is defined by the relation

\[
\omega(f, \delta) = \sup \{ |f(t') - f(t'')| : t', t'' \in [a, b], |t' - t''| \leq \delta \},
\]

which, for an absolutely continuous function \(f(t) \), can be rewritten in the form

\[
\omega(f, \delta) = \sup \left\{ \left| \int_{t'}^{t''} f'(t) \, dt \right| : t', t'' \in [a, b], |t' - t''| \leq \delta \right\}.
\]

Condition (3), which defines the modulus of continuity, can be generalized to the case of a function \(f(x_1, x_2, \ldots, x_n) \) of \(n \) variables.

We specify the distance \(\rho(\overline{x}, \overline{y}) \) between the points \(\overline{x} = \{ x_1, x_2, \ldots, x_n \} \) and \(\overline{y} = \{ y_1, y_2, \ldots, y_n \} \) in \(\mathbb{R}^n \). This distance in \(\mathbb{R}^n \) determines the unit sphere \(B_\rho \) centered at the origin:

\[
B_\rho = \{ \overline{x} : \overline{x} \in \mathbb{R}^n, \ \rho(\overline{x}, \overline{0}) \leq 1 \}.
\]

By \(B_\rho(\overline{a}, r) \) we denote the ball of radius \(r \) centered at the point \(\overline{a} \in \mathbb{R}^n \) and determined by the distance \(\rho \), namely,

\[
B_\rho(\overline{a}, r) = \{ \overline{x} : \overline{x} \in \mathbb{R}^n, \ \rho(\overline{a}, \overline{x}) \leq r \}.
\]

If \(\overline{a} = \overline{0} \), then we write \(B_\rho(r) \) instead of \(B_\rho(\overline{0}, r) \).

The quantity

\[
\omega_\rho(f, \delta) = \sup \left\{ \left| \int_{B_\rho(\overline{a}, r) \cap \overline{Q}} f(\overline{x}) \, d\overline{x} \right| : \overline{a} \in \overline{Q}, \ \mes B_\rho(\overline{a}, r) \leq \delta \right\}
\]

(where the upper bound of the modulus of the integral is taken over all balls \(B_\rho(\overline{a}, r) \) centered at the point \(\overline{a} \in \overline{Q} \) whose measure does not exceed \(\delta \)) is called the modulus of continuity corresponding to the function \(f(\overline{x}) \) summable in a bounded closed domain \(\overline{Q} \subset \mathbb{R}^n \).

For a fixed distance \(\rho \), the modulus of continuity \(\omega_\rho(f, \delta) \) for any function \(f(\overline{x}) \in \overline{Q} \subset \mathbb{R}^n \) possesses the following properties:

(i) \(\omega_\rho(f, 0) = 0 \);

(ii) the function \(\omega_\rho(f, \delta) \) is continuous and nondecreasing for \(0 \leq \delta \leq \mes \overline{Q} \);

(iii) \(\omega_\rho(f, \delta) \) is a semiadditive function on the same set.

Specifying the function \(\omega(\delta) \) with the same properties and the distance \(\rho \) in \(\mathbb{R}^n \), we define the class \(H_\rho^0 \) of functions \(f(\overline{x}) \) summable on the set \(\overline{Q} \) and such that

\[
\omega_\rho(f, \delta) \leq \omega(\delta), \quad \delta \in [0, \mes \overline{Q}].
\]