The Hirschfelds discovered during the World War that the highest percentage of blood group B (or I) existed among the native Indian troops. Unfortunately, they lumped together all the data from Gurkhas, Garowals, Jats, Kumaons and Rajputs with that from low-caste people from all over India who were in the Labour Transport Corps (Malone & Lahiri) and called the lot "Indians". Because the sample was racially heterogeneous the classical Hirschfeld data are of little value anthropologically, although they served to draw attention to India as a possible locale of the mutation which produced agglutinogen B.

Further misapprehension regarding the Hirschfeld data was caused by Ottenburg (1922, 1923), who republished them as "Hindus". In America and in the continent of Europe the term Hindu is still used in its older connotation of "Native of Hindustan". Elsewhere Hindu now signifies a religious group, followers of Brahminism. Under modern usage it is as inaccurate to call the Indian Sepoys Hindus as it would be to call the American Doughboys Protestants.

Nothing more was published on Indian blood groups for ten years, when a comprehensive study by Malone & Lahiri appeared. They examined a large number of people belonging to three of the six Indian racial types of Risley (1915). Over 300 Turko-Iranians represented by Baluchis, Hazaras and Pathans were tested from among the Indian troops at Quetta. Nearly 500 Indo-Aryans from the Punjab belonging to the Jats, Khatris and Rajputs were selected from the patients at the Pasteur Institute, Kasauli. The data for each of these six ethnic groups were kept distinct, but it would have been better if the different castes and sects had also been treated separately.

Malone & Lahiri also recorded the blood-group distribution in a mixed group of 589 aborigines from Chota Nagpur, Bchar, belonging to the Munda, Sautal and Uraon tribes which they classified as "Dravidians". These subjects were prisoners or tea-garden coolies. Bloods from a

1 Collaborator in Asiatic Research, University of Michigan, U.S.A.
2 The Hazaras have a considerable amount of Mongol blood.
large sample of over two thousand people from the United Provinces belonging to various Hindu castes were also tested. It is to be regretted that the doctors failed to keep distinct the data for different tribes and castes in the last two lots, especially after they had criticized the Hirschfelds for lumping together data from several races. Hindu society is endogamous in varying degrees within the caste, and miscegenation is rare in most regions. Each caste is therefore a biological strain differing more or less from the others. For a true picture of Indian blood-group distribution adequate unmixed samples from many of the numerous castes and tribes are needed from each province. To obviate the effect of a preponderance of certain blood groups within a family Malone & Lahiri examined no more than one member from a family.

Another record that loses value because of heterogeneity is that of Bais & Verhöef (1928) for Tamil tea-garden coolies in Sumatra. These people were natives of various parts of South India and Ceylon and belonged to several low-caste and untouchable strains. These authors call attention to the differences in blood-group proportions between the Tamil “Dravidians” and the “Dravidians” of Malone & Lahiri. They believe that the Tamils are more like the Indo-Afghan people serologically than any other Dravidians.

In the past three years there has been greater activity in this field, and data have been obtained from several regions and races. The records to the beginning of 1938 are given in Tables I and II and in the References. India offers one of the richest fields for anthropological serology, and the data are still meagre.

Racial comparison

The biochemical index \(\frac{A+AB}{B+AB} \) was proposed by the Hirschfelds as a means of comparing different races with regards to blood-group distribution. Hirschfeld postulated only two genes concerned with isoagglutinogen formation. Subsequently Bernstein’s hypothesis of three allelomorphs \(A, B \) and \(R \) has been substantiated and the frequencies of these genes, \(p, q \) and \(r \), are now preferred to give a picture of comparative conditions (Wiener).

The frequencies of \(A \) and \(B \) (\(p \) and \(q \)) have been plotted for twenty of the least heterogeneous Indian records and the figures have been arranged roughly in descending values of \(B \) in Fig. 1. The highest values for \(q \) are shown by the Todas of the Nilgiri Hills (Pandit) and by the