Correlations of Normality and Nervousness with Cardiovascular Functions in Pointer Dogs

Joseph E. O. Newton, M.D., John L. Chapin, M.D., and Oddis D. Murphree, Ph.D.

Neuropsychiatric Research Laboratory, Veterans Administration Hospital, North Little Rock, Arkansas, and the University of Arkansas Medical Center, Little Rock, Arkansas

Abstract—Methylphenidate, 0.5 mg/kg, injected intravenously, was used in 10 normal (A line) and 10 genetically nervous (E line) dogs in a blind-design experiment to aid in prediction, from cardiovascular recordings alone, of behavioral normality versus nervousness. The prediction was 75 per cent correct, based on heart rate (HR), form of the electrocardiogram (EKG), pattern of sinus arrhythmia, and pattern of HR response to methylphenidate. Nervous dogs were found to have slower baseline HR's, delayed return of HR to baseline after methylphenidate, greater occurrence of baseline EKG abnormalities and much greater frequency of these after methylphenidate. Degree of nervousness was found to correlate rather highly (1) negatively with baseline HR level, (2) negatively with speed of BP response, and (3) positively with frequency of some of the EKG manifestations. These data, indicative of a relative inertness of physiological functions of nervous pointer dogs compared with normal pointers, are consistent with the behavioral and some of the biochemical findings previously reported.

Our two distinct lines of purebred pointer dogs, now well-known in the literature, have been studied for about 14 years (Murphree, et al., 1967). The normal A line consists of behaviorally stable, friendly pointers, while the nervous E line dogs tend to be fearful and avoid humans, are hypervigilant and almost catatonic at times. Many litters of approximately 7 generations have now been raised in the laboratory, starting with a pair of stable pointers as the ancestors of the A line and a pair of “spooky,” apprehensive, Project supported by Veterans Administration, MRLS Number 6051, Project Number 01 (4-69).

We thank Dr. Charles Angel, Professor of Biochemistry, University of Arkansas Medical Center, Little Rock, for supplying us with dissolved and purified methylphenidate suitable for parenteral use since our repeated requests for parenteral methylphenidate were not honored by pharmaceutical companies.
withdrawn pointers as the ancestors of the E line. We have considered the nervous dogs to be a partial research model for psychiatric illness and have undertaken many studies—behavioral, physiological and biochemical—to attempt to understand the processes underlying their abnormal behavior.

Quantification of behavior was undertaken from the very start of this project, in the form of standardized behavior tests. Behavior testing is carried out on all dogs at 3, 6, 9 and 12 months of age. The behavior tests and their scoring have been refined over the years, such that the present system involves the following tests: (1) Amount of exploratory activity for a standard time in a standard room; (2) Approach to or avoidance of a friendly, coaxing human; (3) Whether or not the dog urinates or defecates in the room; and (4) Duration of immobility in another room where a loud Klaxon horn is sounded. The dog achieves a score on each of these tests and after proper weighting of scores they are summed to give a morbidity score. Recently the scoring system has been revised to give a greater possible range of scores, from 2 to 15. In general, normal A dogs achieve scores ranging from about 3 to 7, while nervous E dogs' scores range from about 9 to 14. Because of the recent revision of scoring, the morbidity scores used in the present paper tend to be about 1.5 times those denoted in the recently published study of rehabilitation of some of the nervous dogs (McBryde and Murphree, 1974).

The present studies were undertaken with a threefold purpose in mind: (1) to try to replicate in the normal and nervous dogs the human study of Janowsky and colleagues (1973), who showed that intravenously injected methylphenidate potentiated psychotic signs and symptoms in schizophrenic patients and caused prolonged HR and BP increases in the schizophrenics as compared to normal subjects; (2) to attempt to predict blindly from the various cardiovascular findings and responses whether a cardiovascular record belonged to a normal A or nervous E dog, knowing only that there were 10 dogs of each line; and (3) to determine other derived data and correlations among the data, including morbidity scores. For descriptive purposes the procedure is divided into three experiments.

Experiment I

Subjects

Twenty dogs, 10 normal A's and 10 nervous E's, were selected, matched as nearly as possible for age and sex. There were 6 male and 4 female A dogs, 5 male and 5 female E dogs. The range of