PSEUDO-CHEBYSHEV SUBSPACES IN L^1

H. MOHEBI

Abstract. We give various characterizations of pseudo-Chebyshev subspaces in the spaces $L^1(S, \mu)$ and $C(T)$.

AMS Mathematics Subject Classification: 46E15, 46E30, 46E27, 41A65.

Keywords and Phrases: Proximinality, Compact Hausdorff space, Pseudo-Chebyshev subspace, Measure space, Continuous function.

1. Introduction and Preliminaries

Let (S, μ) be a positive measure space and let $L^1(S, \mu)$ be the Banach space of all complex-valued measurable functions (the equivalence classes) defined on S and equipped with the norm

$$
\|f\|_1 = \int_S |f| d\mu, \quad f \in L^1(S, \mu).
$$

We denote by $L^\infty(S, \mu)$ the Banach space of all essentially bounded complex-valued measurable functions defined on S and equipped with the norm

$$
\|f\|_\infty = \text{ess sup}\{|f(s)|; \ s \in S\}, \quad f \in L^\infty(S, \mu).
$$

A measure space (S, μ) is called a σ-finite measure space if there exists a sequence $\{A_n\}_{n \geq 1}$ of measurable subsets of S such that $S = \bigcup_{n=1}^{\infty} A_n$ and $\mu(A_n) < +\infty$ for all $n = 1, 2, \ldots$. Let T be a compact Hausdorff topological space and let $C(T)$ be the Banach space of all complex-valued continuous functions defined on T and equipped with the supremum norm ($\|f\| = \sup_{t \in T} |f(t)|, \quad f \in C(T)$).

Let X be a (complex or real) normed linear space and let Y be a linear subspace of X. A point $y_0 \in Y$ is said to be a best approximation for $x \in X$
if
\[\|x - y_0\| = d(x, Y) = \inf \{\|x - y\| : y \in Y\}. \]
If each \(x \in X \) has at least one best approximation in \(Y \), then \(Y \) is called a proximinal subspace of \(X \). If each \(x \in X \) has a unique best approximation in \(Y \), then \(Y \) is called a Chebyshev subspace of \(X \).

For \(x \in X \), put
\[P_Y(x) = \{y \in Y : \|x - y\| = d(x, Y)\}. \]

It is clear that \(P_Y(x) \) is a closed bounded convex subset of \(X \) for every \(x \in X \).

A linear subspace \(Y \) of a normed linear space \(X \) is called pseudo-Chebyshev if \(P_Y(x) \) is a non-empty and finite-dimensional set for every \(x \in X \) (see [5]).

For an arbitrary non-empty convex set \(A \) in a normed linear space \(X \), we denote by \(\ell(A) = \{\alpha x + (1 - \alpha) y : x, y \in A; \ \alpha \ \text{is scalar}\} \) the linear manifold spanned by \(A \). For every fixed \(y \in A \) the set \(\ell(A) - y = \{x - y : x \in \ell(A)\} \) is a linear subspace of \(X \) and satisfying \(\ell(A) - y = \ell(A - y) \).

The dimension of an arbitrary convex set \(A \) in \(X \) is defined by
\[\dim A = \begin{cases} \dim \ell(A), & A \neq \emptyset \\ -1, & A = \emptyset. \end{cases} \]

Then, for every \(y \in A \) we have
\[\dim A = \dim \ell(A) = \dim[\ell(A) - y] = \dim \ell(A - y) = \dim(A - y). \]

(For more details see [6].)

For an easy reference, we gather some known results which will need in the proof of the main results.

Lemma 1.1 ([4, 6; Theorem 1.1]). Let \(Y \) be a linear subspace of a normed linear space \(X \) and let \(x \in X \setminus \overline{Y} \), \(y_0 \in Y \). Then \(y_0 \in P_Y(x) \) if and only if there exists \(f \in X^* \) such that \(\|f\| = 1 \), \(f|Y = 0 \) and \(f(x - y_0) = \|x - y_0\| \).

Lemma 1.2 ([1; Theorem 2.1]). Let \(W \) be a proximinal linear subspace of a normed linear space \(X \). Then the following are equivalent:

a) \(W \) is pseudo-Chebyshev in \(X \).

b) There do not exist \(f \in X^* \), \(x_0 \in X \) and infinitely many linearly independent elements \(x_1, x_2, \ldots \) in \(X \) with \(x_0 - x_n \in W \) \((n = 1, 2, \ldots)\) such that \(\|f\| = 1 \), \(f|W = 0 \) and \(f(x_n) = \|x_n\| \) for all \(n = 0, 1, 2, \ldots \).

c) There do not exist \(f \in X^* \), \(x_0 \in X \) and infinitely many linearly independent elements \(g_1, g_2, \ldots \) in \(W \) such that \(\|f\| = 1 \), \(f|W = 0 \) and \(f(x_0) = \|x_0\| = \|x_0 - g_n\| \) for all \(n = 1, 2, \ldots \).