THE CLASSIFICATION OF 3-DIMENSIONAL
LOCALLY STRONGLY CONVEX
HOMOGENEOUS AFFINE HYPERSURFACES

FRANKI DILLEN AND LUC VRANCKEN

1. INTRODUCTION

In this paper, we will give a complete classification of the 3-dimensional homogeneous, locally strongly convex affine hypersurfaces. We use the same notation as in [DV2]; for a detailed treatment, see [N].

From now on, M will always be a 3-dimensional, locally strongly convex locally homogeneous hypersurface of \mathbb{R}^4. Then the shape operator S is always diagonalizable, and the eigenvalues of S are constant along M. According to the number of different eigenvalues, we have the following results.

Theorem 1. There are no 3-dimensional locally strongly convex, locally homogeneous hypersurfaces in \mathbb{R}^4 whose affine shape operator S has three distinct eigenvalues.

We will prove Theorem 1 in Section 2. Next, if S has two distinct eigenvalues, we can use the classification in [DV2] and [DV4] to obtain the following theorem.

Theorem 2. Let M^3 be a locally strongly convex, locally homogeneous hypersurface in \mathbb{R}^4, whose shape operator has two distinct eigenvalues. Then M is affine equivalent to the convex part of one of the following hypersurfaces:

\[
\begin{align*}
(y - \frac{1}{2}(x^2 + z^2))^4w^2 &= 1, \\
(y - \frac{1}{2}x^2)^3(z - \frac{1}{2}w^2)^3 &= 1, \\
(y - \frac{1}{2}x^2)^3u^2w^2 &= 1, \\
(y - \frac{1}{2}x^2 - \frac{1}{2}w^2)^4z^3 &= 1,
\end{align*}
\]

where (x, y, z, w) are the coordinates of \mathbb{R}^4.

Finally, if S is a multiple of the identity, M is called an affine sphere. Globally homogeneous affine spheres have been classified in [S] by T. Sasaki, see also [DV3]. In Section 3 and Section 4, we will obtain a classification of the locally homogeneous affine hyperspheres. First, in Section 3, we will construct a special differentiable frame which we will use in Section 4 to prove the following theorem.

1991 Mathematics Subject Classification. 53A15, 53C30.
Both authors are Senior Research Assistant of the National Fund for Scientific Research (Belgium)
Theorem 3. Let M be a 3-dimensional locally strongly convex, locally homogeneous hypersphere in \mathbb{R}^4. Then either M is an open part of a locally strongly convex quadric or M is affine equivalent to an open part of one of the following two hypersurfaces:

1. $xyzw = 1$,
2. $(y^2 - z^2 - w^2)\lambda^2 = 1$.

Clearly the above three theorems together give a complete classification of the 3-dimensional, locally homogeneous, locally strongly convex affine hypersurfaces in \mathbb{R}^4.

2. Proof of Theorem 1

Let $p \in M$. Since M is locally strongly convex and S has 3 different eigenvalues, we can take h-orthonormal tangent vector fields E_1, E_2, E_3 on a neighborhood of p such that

\[
SE_1 = \lambda_1 E_1 \\
SE_2 = \lambda_2 E_2 \\
SE_3 = \lambda_3 E_3.
\]

We introduce functions γ_{ij}^k by

\[
\nabla_{E_i} E_j = \sum_{k=1}^{3} \gamma_{ij}^k E_k.
\]

Since at every point the vector fields E_1, E_2 and E_3 are uniquely determined, the functions γ_{ij}^k are constant.

Lemma 2.1. For $i \neq j$, we have that $\gamma_{ij} = 0$.

Proof. From the equation of Codazzi for S, we obtain

\[
0 = (\nabla_{E_i} S) E_j - (\nabla_{E_j} S) E_i \\
= \lambda_j \nabla_{E_i} E_j - S(\nabla_{E_i} E_j) - \lambda_i \nabla_{E_j} E_i + S(\nabla_{E_j} E_i).
\]

Taking then the E_i and the E_j component of this equation gives us that

\[
\gamma_{ij}^i = 0 = \gamma_{ji}^j.
\]

Lemma 2.2. Let i, j, k be 3 mutually different numbers, then

\[
(\lambda_j - \lambda_k)\gamma_{ij}^k = (\lambda_i - \lambda_k)\gamma_{ji}^k.
\]

Proof. We look at (2.1). Take k different from both i and j and consider the component in the direction of E_k. From this, the proof follows immediately.