ON THE INVERSES OF A CIRCLE WITH RESPECT TO A TETRAD OF FIXED CIRCLES AND THEIR ORTHOGONAL TETRAD

BY B. R. VENKATARAMAN

Research Scholar, Annamalai University

Received December 13, 1938
(Communicated by Professor A. Narasinga Rao)

1. Let C_i ($i = 1, 2, 3, 4$) be four circles and S_i the four circles respectively orthogonal to sets of three chosen from C_i. The main object of this paper is then to establish the following results.

If the inverses of a point P w.r.t. the circles C_i lie on a circle, then the inverses of P w.r.t. S_i also lie on a circle. The locus of such points P is an octavic curve F_1 having quadruple points at the circular points at infinity (1.1)

The totality of circles Σ whose inverses w.r.t. C_i have a common orthogonal circle as also the inverses w.r.t. S_i consists of the four coaxal systems respectively conjugate to the four systems defined by the pairs C_i, S_i; ($i = 1, 2, 3, 4$) and a family of circles whose centres lie on a quartic curve. (1.2)

If the inverses of a circle Σ, w.r.t. the circle C_i have a common orthogonal circle Σ', the transformation in circle-space carrying Σ to Σ is the involutory cubic transformation whose singular points are those representing the circles S_i and whose fixed points represent the circles cutting the circles C_i at equal angles. (1.3)

Lastly the following theorem relating to the Miquel-Clifford configuration is proved.

If the inverses of a point P w.r.t. n concurrent circles C_i lie on a circle then the inverses of P w.r.t. every concurrent set of n circles of the Miquel-Clifford configuration generated by the circles C_i also lie on a circle. (1.4)

2. It is well known that the ∞^3 circles of a plane π may be represented by the points of a projective space S_3, the ∞^2 point circles corresponding to points on a quadric Q called the Absolute. Let us represent, for convenience, by the same symbol both the circle on π and its corresponding point in S_3. Let Δ_1, Δ_2 be the two tetrahedra whose vertices represent C_i and S_i so

* My thanks are due to Professor A. Narasinga Rao for guidance and criticism in the preparation of this paper.
that \(\Delta_1, \Delta_2 \) are reciprocals of each other in regard to \(\Omega \). If the inverses of a point \(P \) on \(\pi \) w.r.t. the circles \(C_i \) are concyclic, it is easy to see that in \(S_9 \) the projections of \(C_i \) on \(\Omega \) from \(P \) as vertex of projection are coplanar. In this case, the generators \(g_1, g_2 \) of \(\Omega \) at \(P \) and the lines joining \(P \) to the vertices \(C_i \) of \(\Delta_1 \) all lie on a quadric cone of vertex \(P \) and hence \(g_1 \) and \(g_2 \) both belong to the same tetrahedral complex \(\Gamma \) whose fundamental tetrahedron is \(\Delta_1 \). Hence \(g_1, g_2 \) and the four lines of intersection of the faces of \(\Delta_1 \) with the tangent plane \(p \) to \(\Omega \) at \(P \) all touch a conic, \(\text{viz.} \), the complex conic of \(\Gamma \) in the plane \(p \). Reciprocating this result in regard to \(\Omega \) we immediately see that \(g_1, g_2 \) and the lines joining \(P \) to the vertices \(S_i \) of \(\Delta_2 \) all lie on a quadric cone of vertex \(P \). Hence the projections of \(S_i \) from \(P \) on \(\Omega \) are coplanar. Hence on \(\pi \) the inverses of \(P \) w.r.t. the circles \(S_i \) lie on a circle. Thus the first part of (1.1) is proved. As a particular case of (1.1), we have the theorem that if the centres of four circles \(C_i \) lie on a circle then the centres of the four circles \(S_i \) respectively orthogonal to sets of three chosen from \(C_i \) also lie on a circle.

3. Next, taking \(\Delta_1 \) as the tetrahedron of reference let the homogeneous co-ordinates of points in \(S_9 \) be so chosen that the equation of the Absolute takes the form

\[
\Omega = a_{11} x_1^2 + \cdots + a_{44} x_4^2 + 2a_{12} x_1 x_2 + \cdots = 0.
\]

If two circles \(\Sigma, \Sigma' \) are inverses of one another in regard to a circle \(C \) it is known that in \(S_9 \), \(\Sigma, \Sigma' \) are collinear with \(C \) and separate harmonically \(C \) and the point of intersection of the line with the polar plane of \(C \) in regard to \(\Omega \). The use of this property shows that if \(X \) be a circle of co-ordinates \(x_i \) and \(X_i \) the four circles which are respectively the inverses of \(X \) w.r.t. \(C_i \), then the co-ordinates of \(X_i \) are obtained from those of \(X \) by simply changing \(x_i \) into \(x_i - \frac{1}{a_{ii}} \frac{\partial \Omega}{\partial x_i} \) and leaving the three other co-ordinates unaltered. The condition of coplanarity of the points \(X_i \) is then easily seen to be

\[
\psi_i \equiv \frac{a_{11} x_1}{\hat{p}_i} + \cdots + \frac{a_{44} x_4}{\hat{p}_i} - 2 = 0 \tag{3.1}
\]

where

\[
\hat{p}_i = \frac{1}{2} \frac{\partial \Omega}{\partial x_i} \quad (i = 1, 2, 3, 4).
\]

Hence the \(\infty^2 \) circles \(C \) on \(\pi \) which are such that the inverses of \(C \) w.r.t. \(C_i \) have a common orthogonal circle are represented in \(S_9 \) by the points of the quartic surface \(\psi_1 \). The surfaces \(\psi_1 \) and \(\Omega \) intersect in an octavic curve \(\Gamma_1 \). From the definitions of \(\psi_1 \) and \(\Omega \) it is evident that the points of \(\Gamma_1 \) represent points \(P \) on \(\pi \) which are such that the inverses of \(P \) w.r.t. the circles \(C_i \) lie