LAMINAR JET OF A COMPRESSIBLE PSEUDO-PLASTIC FLUID

BY N. L. KALATHIA AND R. K. JAIN

(Department of Mathematics, I.I.T., Kanpur, India)

Received April 6, 1967
(Communicated by Prof. J. N. Kapur, F.A.Sc.)

ABSTRACT

Similarity solutions of the boundary layer equations for compressible pseudo-plastic fluids for plane symmetrical jet are obtained in a closed form. Behaviour of velocity component perpendicular to the axis of the jet is discussed in detail.

INTRODUCTION

Toose (1952) obtained solution in closed form for a plane symmetrical jet of a compressible fluid. Toose's assertion about the behaviour of transverse velocity component was corrected later by Kapur (1958). Kapur (1962, 1963) discussed incompressible two-dimensional jet for pseudo-plastic power law fluids. Here we attempt to extend Kapur's analysis to include compressibility effects. We obtain similarity solutions in a closed form and disuss the behaviour of transverse component of velocity in detail.

BASIC EQUATIONS

We use cartesian co-ordinates taking axis of the jet as x-axis and y-axis perpendicular to it. Origin is some fixed point on jet axis. Suffixes a, j and t will denote values in the undisturbed stream, at the orifice and on the axis of the jet respectively.

Two-dimensional boundary layer equations in the absence of pressure gradient for compressible pseudo-plastic power law fluid are easily obtained (Kapur, 1963) as the following:

\begin{align*}
\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} &= \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial u}{\partial y} \right)^{n-1} \frac{\partial u}{\partial y} \right] \quad (1) \\
\rho u \frac{\partial}{\partial x} (c_{pt}) + \rho v \frac{\partial}{\partial y} (c_{pt}) &= \frac{\partial}{\partial y} \left(k \frac{\partial t}{\partial y} \right) + \mu \left(\frac{\partial u}{\partial y} \right)^{n-1} \left(\frac{\partial u}{\partial y} \right)^2 \quad (2) \\
\frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) &= 0 \quad (3) \\
\rho t &= \rho_a t_a = \rho_j t_j. \quad (4)
\end{align*}
where \(\rho \) denotes density; \(t \) absolute temperature; \(\mu \) the coefficient of viscosity; \(c_p \) specific heat at constant pressure; \(k \) the coefficient of thermal conductivity; and \((u, v, 0)\) the velocity field. Further we have made use of stress and rate of strain relationship given by

\[
t_{ij} = \mu \left| \sum_{m=1}^{3} \sum_{m=1}^{3} e_{nm} e_{mn} \right|^{(n-1)/2} \epsilon_{ij}
\]

which defines power law fluids, \(n \) being the characteristic of the fluid. \(\mu \) is in general dependent on temperature. This dependence is taken to be the same as by Toose (1952) so that

\[
\frac{\mu}{\mu_j} = \left(\frac{t}{t_j} \right)^n, \quad \frac{1}{2} \leq m \leq 1.
\]

(5)

Since the jet is symmetrical and the transverse component of velocity is to vanish on the jet axis, therefore,

\[
v = \frac{\partial u}{\partial y} = 0 \quad \text{at} \quad y = 0.
\]

(6)

Further axial component of velocity vanishes at an infinite distance from the jet axis, therefore,

\[
u = 0 \quad \text{as} \quad y \rightarrow \infty
\]

(7)

(6) and (7) constitute the boundary conditions of the present problem. We make a change of independent variables from \(x \) and \(y \) to \(x \) and \(\psi \) where \(\psi \) is a stream function defined as

\[
u = \frac{\rho_j}{\rho} \frac{\partial \psi}{\partial y}, \quad \psi = -\frac{\rho_j}{\rho} \frac{\partial \psi}{\partial x}.
\]

It reduces equation (1) to

\[
\rho_j \frac{\partial u}{\partial x} = \frac{\partial}{\partial \psi} \left[\mu \left| \frac{\rho u}{\rho_j \partial \psi} \right|^{n-1} \frac{\rho u}{\rho_j \partial \psi} \right].
\]

(8)

Further if we denote

\[
U = \frac{u}{u_j}, \quad T = \frac{t}{t_j}, \quad X = \frac{x}{L}, \quad \Psi = \frac{\psi}{\sqrt{u_j v_j} L}
\]

\[
\lambda = \frac{\mu}{\mu_j} = \left(\frac{t}{t_j} \right)^n = T^n, \quad \Omega = \frac{\rho}{\rho_j}.
\]