ON EXCEPTIONAL VALUES OF ENTIRE AND MEROMORPHIC FUNCTIONS

K. A. NARAYANAN

[Department of Mathematics, Karnataka Regional Engineering College, P.O. Srinivasanagar 574157 (S.K.), Karnataka State, India]

Received February 20, 1974

(Communicated by Prof. B. S. Madhava Rao, F.A.Sc.)

ABSTRACT

Let \(f(z) \) be meromorphic function of finite nonzero order \(p \). Assuming certain growth estimates on \(f \) by comparing it with \(r^p L(r) \) where \(L(r) \) is a slowly changing function we have obtained the bounds for the zeros of \(f(z) - g(z) \) where \(g(z) \) is a meromorphic function satisfying \(T(r, g) = o \{ T(r, f) \} \) as \(r \to \infty \). These bounds are satisfied but for some exceptional functions. Examples are given to show that such exceptional functions exist.

1. Let \(f(z) \) be a meromorphic function of order \(\rho (0 < \rho < \infty) \). If \(f(z) \) is an entire function let \(M(r, f) = \max |f(z)| \) on \(|z| = r \). Let \(T(r, f) \) be the Nevanlinna's characteristic function for \(f(z) \) and \(g_1(z), g_2(z), \ldots \) be any set of functions satisfying

\[T(r, g_i(z)) = o \{ T(r, f) \} \text{ as } r \to \infty (i = 1, 2, \ldots). \] (1.1)

Let \(n(r, x), \tilde{n}(r, x) \) be the number of zeros and the number of distinct zeros respectively of \(f(z) - x \) and \(\tilde{n}(r, f - g) \) the number of distinct zeros of \(f(z) - g(z) \) in \(|z| \leq r \). Define

\[\tilde{N}(r, \frac{1}{f - g}) = \int_0^r \tilde{n}(t, f - g) \frac{dt}{t}. \]

If \(g \) is an infinite constant let \(\tilde{n}(r, f - g) = \tilde{n}(r, f) \) the number of distinct poles of \(f(z) \) in \(|z| \leq r \).

In this paper we study the exceptional values of the function \(f(z) \) by making use of the comparison function \(r^p L(r) \) where \(L(r) \) is a slowly increasing function satisfying
\[L(Ct) \sim L(t) \text{ as } t \to \infty \text{ for every fixed positive } C. \] Let \(k \) denote any constant \(\geq 1 \) and
\[
h(\rho) = \left\{ \rho + (1 + \rho^2)^{\frac{1}{2}} \left\{ \frac{1}{\rho} + (1 + \rho^2)^{\frac{1}{2}} \right\} \right\} (\rho > 0). \tag{1.2}
\]
Let \(A \) be a constant not necessarily the same at each occurrence.

Theorem 1.—If \(f(z) \) is an entire function of order \(\rho (0 < \rho < \infty) \) satisfying
\[
\log M(kr, f) = a (0 < a \leq \infty) \tag{1.3}
\]
then
\[
\limsup_{r \to \infty} \frac{\log M(kr, f)}{r^\rho L(r)} = a \tag{1.4}
\]
and
\[
\limsup_{r \to \infty} \frac{N(r, f - g)}{r^\rho L(r)} \geq \frac{a}{2k^\rho h(\rho)} \tag{1.5}
\]
for every entire function \(g(z) \) (including a polynomial or a finite constant) satisfying (1.1) with one possible exception.

Remark.—The exceptional function may actually exist. Consider for example
\[
f(z) = \prod_{n=2}^{\infty} \left(1 + \frac{z}{n (\log n)^2} \right).
\]
Here
\[
\bar{n}(r, 0) \sim \{r/(\log r)^2\}; \quad \log M(r, f) \sim (r/\log r).
\]
Set
\[
r^\rho L(r) = r^\rho (r)
\]
where
\[
\rho(r) = 1 - \frac{\log \log r}{\log r}
\]