GENERALIZATION OF NORMAL CURVATURE OF A CURVE IN A RIEMANNIAN V_n

BY M. K. SINGAL AND RAM BEHARI, F.A.Sc.
(University of Delhi)

Received November 7, 1955
(Communicated by Ram Behari, F.A.Sc.)

1. The object of the present paper is to define an invariant which is a generalization of the expression for the normal curvature of a curve in V_n, and to obtain generalizations of some known results.

2. Consider a Riemannian space V_n of co-ordinates x^i, i = 1, 2, ... n and metric

\[ds^2 = g_{ij} dx^i dx^j \quad , \quad (2.1) \]

imbedded in a V_{n+1} of co-ordinates y^a, a = 1, 2, ... n + 1 and metric

\[ds^2 = a_{\alpha\beta} dy^\alpha dy^\beta . \quad (2.2) \]

We have the relation

\[g_{ij} = a_{\alpha\beta} y^\alpha , i \quad , \quad (2.3) \]

where comma denotes covariant differentiation.

Let N^a denote the contravariant components of the unit normal to V_n, then

\[a_{\alpha\beta} N^a N^\beta = 1 , \quad (2.4) \]

and

\[a_{\alpha\beta} N^a y^\beta ; i = 0 , \quad (i = 1, 2, \ldots n) \quad (2.5) \]

where (;) followed by an index denotes generalized covariant derivative (or tensor derivative) with respect to the x with that index.

We have

\[N^a ; i = - \Omega_{ijk} y^s , k , \quad (2.6) \]

where \(\Omega_{ijk} \) are the components of a symmetric covariant tensor of the second order given by

\[\Omega_{ij} = y^s ; ij a_{\alpha\beta} N^\beta . \quad (2.7) \]
From (2.6) we have
\[N_{a;ie} = - \epsilon^i \Omega_{ij} g^{ik} y_{s;k} , \]
(2.8)
where \(\epsilon^i \) are the components of a unit vector in the hypersurface.

The resolved part of the derived vector \(N_{a;ie} \) in the direction of another unit vector \(a \) in the hypersurface is given by
\[(- \epsilon^i \Omega_{ij} g^{ik} y_s) a_{i;k} = - \epsilon^i \Omega_{ij} g^{ik} y_s a^l, \]
(2.9)
and therefore the resolved part of the derived vector \(N_{a;ie} \) along \(\epsilon^i \) is
\[e^i = - \Omega_{ij} e^j. \]
(2.10)

3. Let \(\lambda^a \) be the components of a unit vector in the direction of a curve of a congruence such that one curve of the congruence passes through each point of \(V_n \).

\(\lambda^a \) can be expressed in terms of \(y^a_{;i} \) and \(N^a \) as
\[\lambda^a = y^a_{;i} t^i + r N^a. \]
(3.1)
Since \(\lambda^a \) are the components of a unit vector,
\[1 = a_{a\beta} \lambda^a \lambda^\delta = a_{a\beta} (y^a_{;i} t^i + r N^a) (y^\beta_{;j} t^j + r N^\beta) \]
\[= g_{ij} t^i t^j + r^2. \]
(3.2)
The tensor derivative of (3.1) with respect to \(x^i \) yields
\[\lambda^a_{;j} = y^a_{;ij} t^i + y^a_{;i} t^i_{;j} + r N^a_{;j} + r N^a_{;j} \]
\[= N^a [\Omega_{ij} t^j + r_{;j}] + y^a_{;k} [t^k_{;j} - r \Omega_{ij} g^{jk}], \]
(3.3)
From (3.3) we have
\[a_{a\beta} \left(y^\beta_{;i} \frac{dx^i}{ds} \right) \left(\lambda^a_{;j} \frac{dx^j}{ds} \right) \]
\[= - [r \Omega_{ij} - t_{i;j}] \frac{dx^i}{ds} \frac{dx^j}{ds}. \]
(3.4)

If the congruence be one of normals to the hypersurface, then \(t^i = 0 \), \(r = 1 \), and the right-hand member of (3.4) reduces to (2.10). The expression
\[(r \Omega_{ij} - t_{i;j}) \frac{dx^i}{ds} \frac{dx^j}{ds} \]