ON THE INITIAL-VALUE PROBLEM
OF LINEARIZED EINSTEIN’S EQUATIONS

A. MÉSZÁROS

Central Research Institute for Physics
1525 Budapest, Hungary*

(Received in revised form 14 June 1984)

It is shown that in the absence of sourceless weak gravitational waves the linearized theory of gravitation is necessarily Lorentz covariant.

It is well-known (see, e.g. [1], Chapter 10) that the investigation of weak (linearized) Einsteinian gravitation is usually done in harmonic systems only. The form of linearized Einstein’s equations in an arbitrarily chosen \((x^0, x^1, x^2, x^3)\) harmonic system is

\[
\square h^{ij}(x) = 16\pi G \left(T^{ij}(x) - \frac{1}{2} \eta^{ij} : T(x) \right), \quad T(x) \equiv T^i_i(x),
\]

\[
h^{ij}(x), \quad j = \frac{1}{2} h(x)^i_i, \quad h(x) \equiv h_i^i(x).
\]

In this paper the dependence on \(x\) denotes the dependence on four \(x^i\) coordinates; \(T^{ij}(x)\) is the energy-momentum tensor; the index after a comma denotes partial differentiation (e.g. \(h^{ij}(x) = \frac{\partial h^{ij}(x)}{\partial x^l} \)); the system \(c = G = 1\) is used, \(c\) is the velocity of light and \(G\) is the gravitational constant; \(\eta^{ij} = \eta_{ij} \equiv \text{diag} (1, -1, -1, -1)\) is the Minkowski’s tensor; the indices are moved using the Minkowski’s tensor; \(\square \equiv \frac{\partial^2}{\partial x^i \partial x^i}\). The ten \(h^{ij}(x)\)’s are defined by

\[
g^{ij}(x) = \eta^{ij} + h^{ij}(x), \quad |h^{ij}(x)| \ll 1,
\]

where \(g^{ij}(x)\) is the contravariant metric tensor. If \((x) \equiv (x^0, x^1, x^2, x^3)\) is a harmonic system, then the transformed system \((\tilde{x}) \equiv (\tilde{x}^0, \tilde{x}^1, \tilde{x}^2, \tilde{x}^3)\) is a harmonic one too, if the form of the coordinate transformation is given by

\[
\tilde{x}^i(x) = x^i + y^i(x), \quad \square y^i(x) = 0,
\]

* Permanent address: Department of Astronomy and Astrophysics, Charles University, 15000 Prague-5, Švédska 8, ČSSR
where \(y^i(x)'s \) are infinitesimal. The relations (1)-(4) in detail are given, e.g. in [1] in Chapters 7.4 and 10.1.

In linearized Einstein's theory the global Lorentz transformations

\[
\tilde{x}^i(x) = L_j^i \cdot x^j + b^i
\]

(5)

are allowed too (see, e.g., [2], Box. 18.2), where \(L_j^i, b^i \) are constants. Therefore we shall assume that in (4) \(y^i(x) \) may be given by

\[
y^i(x) = L_j^i \cdot x^j - x^i + b^i,
\]

(6)

too.

The solutions of wave equations (1) are usually given by the well-known retarded potentials (see, e.g. [2], Chapter 18.4). This paper investigates again the rightfulness of these solutions.

From the theory of wave equation (see, e.g. [3]) it follows that equations (1) have unambiguous solutions if \(h^{ij}(x) \) and \(h^{ij}(x),_k \) are given on a spacelike hypersurface, which is defined by relation \(p(x) = 0 \) and is extending to spacelike infinity. In other words the initial-value data \(h^{ij}(x)|_{p(x)=0} \) and \(h^{ij}(x),_k|_{p(x)=0} \) are given. In this case the wave equations (1) have unambiguous solutions “above” the \(p(x) = 0 \) hypersurface. (An \((x^0, x^1, x^2, x^3)\) point is “above” the \(p(x) = 0 \) if \(x^0 > x^*0 \), where \(x^*0 \) is defined by \(p(x^*0, x^1, x^2, x^3) = 0 \). The set of all points “above” gives the “above” part of space-time, i.e. the future Cauchy development of \(p(x) = 0 \); see, e.g. [4], Chapter 6.5. We many solve the Eq. (1) in the past Cauchy development of \(p(x) = 0 \), too.) The hypersurface \(p(x) = 0 \) is usually defined by \(p(x) \equiv x^0 - \text{const} = 0 \); in this case this hypersurface is the entire three-dimensional space at the time \(x^0 = \text{const} \).

Let the \(h^{ij}(x)|_{p(x)=0} \) and \(h^{ij}(x),_k|_{p(x)=0} \) initial-value data be given, then the solutions of (1) “above” \(p(x) = 0 \) are given by

\[
h^{ij}(x) = h^{ij}(x) + h^{ij}(x).
\]

(7)

The ten \(h^{ij}(x)'s \) are the solutions of (1) if \(h^{ij}(x)|_{p(x)=0} = 0 \) and \(h^{ij}(x),_k|_{p(x)=0} = 0 \) (these are the so-called zero initial-value data); the ten \(h^{ij}(x)'s \) are the solutions of (1) with \(T^{ij}(x) - \frac{1}{2} \eta^{ij} \cdot T(x) = 0 \), but \(h^{ij}(x)|_{p(x)=0} = 0 \) and \(h^{ij}(x),_k|_{p(x)=0} = 0 \) are non-zero. This decomposition of the solution of the wave equation is explained in [3], Chapter 33. The ten \(h^{ij}(x)'s \) are zero if \(T^{ij}(x) - \frac{1}{2} \eta^{ij} \cdot T(x) = 0 \); the ten \(h^{ij}(x)'s \) are zero if the initial-value data are zero. The ten \(h^{ij}(x)'s \) are the solutions with sources (“the weak gravitational waves having sources”); the ten \(h^{ij}(x)'s \) are the solutions having no sources (“the sourceless weak gravitational waves”). From the theory of wave equation ([3], Chapter 34.5) it follows that the ten \(h^{ij}(x)'s \) are the retarded potentials if \(p(x) = x^0 - \text{const} = 0 \). Therefore the zero initial-value data are the necessary conditions (1) to have solutions containing retarded potentials only. If \(p(x) \equiv x^0 - \text{const} = 0 \) is chosen, then the zero initial-value data are sufficient conditions too.