IMPURITY INDUCED $T_C = 0^\circ K$ SUPERCONDUCTIVITY

By

I. KIRSCHNER and A. STARK

DEPARTMENT FOR ATOMIC PHYSICS, ROLAND EÖTVÖS UNIVERSITY, BUDAPEST

(Received 5. III. 1970)

Our earlier result, representing the dependence of critical temperature of superconducting transition on the concentration of dia- and paramagnetic impurities is applied to the case when T_C approaches absolute zero owing to impurities. We calculated the rate of spin flip scatterings $\Delta \Gamma_{so}$ for an electron at the Fermi surface, when either the scattering processes or the change in the Fermi surface topology have a dominant role. The expressions obtained were verified by a comparison with experimental data and by numerical estimation.

Introduction

In a previous paper [1] we examined the effect of para- and diamagnetic impurities on the temperature of superconducting transition. Assuming a Lifshitz singularity in the density of normal single-electronic states, we obtained the next equation for the determination of the critical temperature T_C

$$\lambda \nu_0(\epsilon_F^0) \Re \int_0^{\omega_p} d\omega \frac{\omega}{\omega + i\Gamma_s} \frac{\lambda M}{\Re \int_0^{\omega_p} d\omega \frac{\omega}{\omega + i\Gamma_s}} \left(\frac{\alpha - \omega}{\alpha - \omega} + \frac{i}{\alpha - \omega}\right) = 1,$$

where the first term is the result of the ABRIKOSOV—GORKOV theory [2] and the second term is due to the singularity. In this formula the symbols mean: λ the potential of electron—electron interaction, $\nu_0(\epsilon_F^0)$ the density of the regular normal single-electronic states on the Fermi surface of the pure metal ϵ_F^0, ω_D the Debye frequency, Γ_n and Γ_s are the rates of normal and spin flip scatterings for an electron at the Fermi surface (proportional to the impurity concentration), M is a constant depending on the effective mass of electron:

$$M = \frac{m_1 \sqrt{m_2}}{2\pi^2}$$

and

$$\alpha = \gamma_d \Delta Z_d \Gamma_{nd} + \gamma_p \Delta Z_p \Gamma_{np} - i \frac{\Gamma_n + \Gamma_s}{2} + \epsilon_F^0 - \epsilon_c,$$

$$\alpha^* = \gamma_d \Delta Z_d \Gamma_{nd} + \gamma_p \Delta Z_p \Gamma_{np} + i \frac{\Gamma_n + \Gamma_s}{2} + \epsilon_F^0 - \epsilon_c,$$
where \(m_1 \) and \(m_3 \) are the diagonal elements of the effective mass tensor, \(\Delta Z_d \) and \(\Delta Z_p \) are the differences in the valence of dia- and paramagnetic impurities and the normal metal, \(\gamma_d \) and \(\gamma_p \) are constants, \(\varepsilon_c \) is the critical value of electron energy.

Superconductivity at \(T_c = 0 \, ^\circ K \)

The value of \(T_c \) may be decreased to absolute zero owing to the effects of impurities. This is due to paramagnetic impurities. In this case, in Eq. (1) we have

\[
\text{th} \frac{\omega}{2T_c} = 1.
\]

If \(\Gamma_s = \Gamma_{s0} \), where \(\Gamma_{s0} \) is the value at which \(T_c = 0 \) according to Abrikosov—Gorkov theory, then

\[
\lambda v_0(\varepsilon_F) \frac{\omega}{\omega + i\Gamma_{s0}} = 1.
\]

Writing \(\Gamma_s = \Gamma_{s0} + \Delta \Gamma_{s0} \) and using the iteration method we have, in an approximation of first order,

\[
\Delta \Gamma_{s0} = C \text{Re} \left\{ -\int_0^{\omega_p} d\omega \frac{i(\Gamma_{n0} + \Gamma_{s0}) + 2\omega}{(\omega + i\Gamma_{s0})[\sqrt{\omega_0 - \omega} + \sqrt{\omega_0 + \omega}]} \right\},
\]

where

\[
C = -\frac{M}{v_0(\varepsilon_F)} \frac{\Gamma_{s0}(\omega_D^2 + \Gamma_{s0}^2)}{\omega_D^2}.
\]

Taking into account that \(\Gamma_{n0}/\omega_D \sim 1 \), the absolute values of square roots in the denominator of Eq. (5) are large, we may write, approximately,

\[
\Delta \Gamma_{s0} = C \text{Re} \left\{ -\frac{i(\Gamma_{n0} + \Gamma_{s0}) \ln(\omega + i\Gamma_{s0}) - 2\omega + 2i\Gamma_{s0}(\omega + i\Gamma_{s0})}{\sqrt{\omega_0 - \omega} + \sqrt{\omega_0 + \omega}} \right\}.
\]

The value of \(\Delta \Gamma_{s0} \) we calculate in two important limiting cases of experimental interest.

a) If the scattering processes dominate, e.g. \(\gamma_p \ll 1 \), and assuming, that \(\Gamma_{nd} = 0 \), then expression (6) has the form

\[
\Delta \Gamma_{s0} = C \text{Re} \left\{ \frac{i(\Gamma_{s0} - \Gamma_n) \ln(\omega_D + i\Gamma_{s0}) - 2\omega_D}{(1 + i) \sqrt{\omega_D + \frac{1}{2} i(\Gamma_n + \Gamma_{s0})}} - \frac{i(\Gamma_{s0} - \Gamma_n) \ln i\Gamma_{s0}}{\sqrt{2} i \sqrt{\frac{1}{2} (\Gamma_n + \Gamma_{s0})}} \right\}.
\]