THEORY OF ANHARMONIC CRYSTALS
IN PSEUDOHARMONIC APPROXIMATION

III. CRYSTAL WITH WEAK COUPLING

By

T. Siklós

JOINT INSTITUTE FOR NUCLEAR RESEARCH, LABORATORY OF THEORETICAL PHYSICS
DUBNA, USSR

(Received 12. I. 1971)

The dependence of the instability temperature on the arbitrary external pressure is investigated for a crystal with weak coupling.

In a previous paper [1] the properties of an anharmonic linear chain under arbitrary external tension were considered in a pseudoharmonic approximation. In this paper I present an additional investigation of the properties of a chain in which the coupling of atoms is weak \[\lambda = (\pi D/\omega_{0L}) \leq 2 \]. As I established in the earlier paper it is necessary in this case to investigate the properties of the chain in the low temperature limit.

It was shown in [1] that the self-consistent equation which determines the properties of the chain can be written

\[
\lambda x y(x) = \int_0^{\pi/2} d\varphi \sin \varphi \coth \frac{x \sin \varphi}{2\tau},
\]

where the notations are the same as in [1] and

\[
y(x) = \ln \frac{x^2 - \frac{P^*}{6}}{\left(x^2 - \frac{P^*}{3}\right)^2}.
\]

In the low temperature limit the self-consistent equation (1) can be rewritten in the form

\[
\lambda x y(x) = 1 + \frac{\pi^2}{3} \left(\frac{\tau}{x}\right)^2.
\]

The instability temperature can be obtained as a simultaneous solution of Eq. (3) and its derivative [1]:

\[
\lambda \{y(x) + xy'(x)\} = -\frac{2\pi^2}{3} \frac{\tau^2}{x^3}.
\]
The critical temperature can be obtained as a simultaneous solution of Eqs. (3) and (4) and the second derivative of (3):

$$\lambda \{2y'(x) + xy''(x)\} = 2\pi^2 \frac{\tau^2}{x^4}. \tag{5}$$

It is convenient to rewrite Eqs. (3)–(5) in the following form:

$$\lambda = \frac{1 + \frac{\pi^2}{3} \left(\frac{\tau}{\alpha} \right)^2}{xy(x)}, \tag{6}$$

$$\lambda = \frac{1 + \pi^2 \left(\frac{\tau}{\alpha} \right)^2}{x^2 y'(x)}, \tag{7}$$

$$\lambda = \frac{1 + 2\pi^2 \left(\frac{\tau}{\alpha} \right)^2}{x^2 y''(x)} \tag{8}$$

It is easy to see that if \(P^* = 0 \) Eqs. (7) and (8) are incompatible and consequently there can be no critical temperature. The analytical solution of the

Fig. 1. The dependence of the instability temperature \(\tau_s = \Theta_s / \omega_{sL} \) on the dimensionless coupling constant \(\lambda \) of the atoms.