HYDROLOGIC RESTORATION OF A FEN IN ROCKY MOUNTAIN NATIONAL PARK, COLORADO, USA

David J. Cooper1,2, Lee H. MacDonald1, Shaunda K. Wenger3, and Scott W. Woods1
1 Department of Earth Resources
2 Graduate Degree Program in Ecology
3 Department of Fishery and Wildlife Biology
Colorado State University
Fort Collins, Colorado, USA 80523
E-mail: DavidC@cnr.colostate.edu

Abstract: Big Meadows, a 63-ha fen in Rocky Mountain National Park (RMNP), was ditched for agricultural purposes in the early part of this century. Although use of the ditch ceased after the establishment of RMNP in 1915, it continued to intercept sheet flows in the central and southern portions of the fen, causing the ground-water level to decrease and aerobic soil conditions to develop in the mid- to late-summer of most years. In 1990, the ditch was blocked in an attempt to restore the hydrologic regime in the central and southern portions of the fen. Water-level data from three years prior to restoration and four years after restoration show that blocking the ditch successfully restored surface sheet flow, high late-summer water-table levels, and anaerobic soil conditions in much of the central and southern portions of the fen. Conditions in these areas are now similar to those in the northern portion of the fen. The long-term data from this site also indicate that summer rainfall has a greater influence on the magnitude of late-summer drying than the size of the winter snowpack. In a post-restoration year with extremely low rainfall in July and August, water levels throughout the fen decreased to levels similar to those observed throughout most of the pre-restoration period. The study suggests that this and other fens in the southern Rocky Mountains are extremely sensitive to summer precipitation and the hydrologic changes created by even small ditches or water diversions.

Key Words: fen, hydrology, restoration, Colorado, Rocky Mountains

INTRODUCTION

In many portions of the world, peatlands have been used for fuel or horticultural materials by direct harvesting, or they have been converted to agricultural or silvicultural uses by the construction of drainage ditches. These activities have been well-studied in Europe and Asia (UNESCO 1975, Zuidema 1975, Stewart and Lance 1983, Coulson et al. 1990, Göttlich et al. 1993, Heathwaite et al. 1993), Canada (Rubec et al. 1988, Dang and Lieffers 1989, Hillman 1992), and in a few areas of the U.S., such as Minnesota (Rutter 1955, Boelter 1972, Glazer et al. 1981, Glazer 1987, Garfi and Brooks 1990, Bradof 1992, Keirstead 1992). In contrast, there have been almost no detailed studies on the effects of ditches, water diversions, or mining in peatlands in the western United States or other mountainous regions.

Peatlands occur where soil saturation retards the decomposition of organic matter, allowing it to accumulate (Moore and Bellamy 1974, Sanger et al. 1996). In humid maritime and some high mountain regions, precipitation alone is sufficient to maintain saturated soils. However, in regions where potential evapotranspiration exceeds precipitation, additional surface or ground-water inflows, or both, are necessary to maintain saturated soils (Cooper 1990, Mitsch and Gosselink 1993, Cooper and Andrus 1994).

The southern Rocky Mountains region has a continental climate with warm, dry summers, and peatlands occur only in areas with consistently high water tables (Cooper 1990). These water tables are sustained by local hillslope drainage (Cooper and Andrus 1994) or local or regional ground-water discharge (Cooper 1996). The dependence of Rocky Mountain peatlands on ground-water discharge means that they are all fens and are often extremely sensitive to climate variability or changes in the supply of ground water due to water diversions (Heathwaite et al. 1993).

Big Meadows is a 63-ha fen in Rocky Mountain National Park that was ditched for agricultural use prior to the establishment of the Park in 1915 (Figure 1). Earlier studies determined that even though agricultural activities ceased when the Park was formed, the ditch was still lowering water tables in the central portion of the fen (Schuter 1988, Cooper 1990). On the
basis of these investigations, a restoration program was
designed and implemented in 1990.

Our hydrologic investigations have continued from
1987 to the present, and in this paper, we analyze three
years of pre-restoration and four years of post-resto-
ration water-level data to evaluate both the effects of
the ditch and the success of the restoration project.
These data provide an important case study of a res-

The Big Meadows wetland lies upstream of a glacial
end moraine in the Tonahutu Creek drainage in the
southwestern corner of Rocky Mountain National
Park, Colorado at 2,865 m elevation (Figure 1). Ton-
ahutu Creek drains westward from the Continental Di-

Figure 1. Location of the study area in Rocky Mountain
National Park, Colorado.

vade and is a headwater tributary of the Colorado Riv-
er. The northern and western area of Big Meadows is
a fen supported by ground-water discharging from the
toes of adjacent hillslopes, upward seepage from min-
eral soil, and seepage from spring-fed streams. In the
fen portions of the wetland, up to 2 m of peat has
accumulated on alluvial and glacial material. Adjacent
to Tonahutu Creek, recent alluvial deposits occur at
the surface, and no peat is present.

The fen is gently sloping, and its vegetation is dom-
inated by the sedges Carex aquatilis Wahlberg and
C. utriculata Boott, with the willow Salix planifolia
Pursh, being abundant on the fen margins where min-
eral-rich ground water discharges from hillside aqui-
fers (Cooper 1990) (nomenclature follows Weber and
Wittmann 1996). Conifer forests dominated by Picea
engelmannii (Parry) Engelmann, Pinus contorta Doug-
las ssp. latifolia (Engelmann) Critchfield, and Abies
bifolia A. Murray occur on adjacent hillsides. The
chemistry of surface water in the fen is typical of that
found in granitic watersheds in the Rocky Mountains,
being circumneutral to moderately acid, with extreme-
ly low concentrations of mineral nutrients (Cooper
1990, Cooper and Andrus 1994).

Big Meadows is subject to a strongly seasonal,
snowmelt-driven hydrologic regime. In May and June,
snowmelt runoff floods the area with up to 10 cm of
slowly flowing water. Since summer precipitation is
less than potential evapotranspiration, water tables typ-
ically decrease during the summer and are deepest
from late August through September. The water table
begins to rise in late September or October when
evapotranspiration decreases. The duration and timing
of the summer water-table drawdown is critical, as
high water tables are necessary to maintain anaerobic
soil conditions and retard the decomposition of organic
matter.

In the early 1900s, a ditch was constructed through
the central and southern portions of Big Meadows to
enhance hay production for livestock. This ditch drains
water from the fen to Tonahutu Creek and is approx-
imately 500 m in length, 0.5 m wide, and up to 1.0 m
in depth (Figure 2). Although the ditch has not been
maintained since 1915, it continues to capture surface
water and erode deeper into the peat. Topographic and
botanical evidence indicates that, in the absence of the
ditch, surface water would flow south through Big
Meadows as a water track or path of concentrated wa-
ter flow (Wright et al. 1992). This water track still
exists in the northernmost portion of Big Meadows.
We used water levels in this northern area (the area
around wells 46 to 60 in Figure 2) as controls to eval-
uate the effects of climatic differences between the pre-
and post-restoration study periods.

The diversion of this surface water, combined with