Limit of Julia sets for \(z^d + c \)

YIN Yongcheng
Institute of Mathematics, Zhejiang University, Hangzhou 310027, China

Abstract The limit behavior of Julia set \(J(f_{d,c}) \) for polynomials \(f_{d,c}(z) = z^d + c \) is considered. That \(\{ J(f_{d,c}) \}_{d \geq 2} \) converges to the unit circle \(S^1 \) in Hausdorff metric for some fixed parameter \(c \) is proved and some examples showing \(\{ J(f_{d,c}) \}_{d \geq 2} \) has no limit are given.

Keywords: Julia set, capacity, Hausdorff metric.

The dynamics of polynomials \(f_{d,c}(z) = z^d + c \) has been studied by several authors\(^{[1,2]}\). In this note, we will consider how \(J(f_{d,c}) \) varies for fixed \(c \) as \(d \) tending to infinity.

For fixed \(c \), we establish several lemmas at first.

Lemma 1. For any positive \(\varepsilon \), there exists \(d_0 \) such that the Julia set \(J(f_{d,c}) \) is contained in the closed disk \(\{ |z| < 1 + \varepsilon \} \) for \(d \geq d_0 \).

Proof. For any positive \(\varepsilon \), there exists \(d_0 \) such that \((1 + \varepsilon)^d - |c| > 1 + \varepsilon \) for \(d \geq d_0 \). If \(|z| > 1 + \varepsilon , |f_{d,c}^n(z)| > 1 + \varepsilon \) for all \(n > 0 \). The Montel’s theorem implies that \(\{ f_{d,c}^n \} \) is a normal family in \(\{ |z| > 1 + \varepsilon \} \). \(J(f_{d,c}) \) is contained in \(\{ |z| < 1 + \varepsilon \} \) for \(d \geq d_0 \).

Lemma 2. If \(|c| \neq 1 \), for any positive \(\varepsilon \), there exists \(d_0 \) such that \(J(f_{d,c}) \) is contained in \(\{ |z| > 1 - \varepsilon \} \) for \(d \geq d_0 \).

Proof. For any positive \(\varepsilon \), there exists \(d_0 \) such that \((1 - \varepsilon)^d < \frac{\delta}{2} \) and \((1 + \frac{\delta}{2})^d > 2 + \frac{3\delta}{2} \) for \(d \geq d_0 \).

If \(|z| < 1 - \varepsilon , |f_{d,c}^n(z)| > 1 + \frac{\delta}{2} \) for all \(n \geq 2 \). The family \(\{ f_{d,c}^n \} \) is normal in \(\{ |z| < 1 - \varepsilon \} \) and \(J(f_{d,c}) \) is contained in \(\{ |z| > 1 - \varepsilon \} \) for \(d \geq d_0 \).

Lemma 3. Let \(E \) be a bounded closed set on \(\mathbb{C} \) and \(E \) be not a single point set. Then \(d(E) \geq 2 \cdot \text{cap}(E) \) and equality holds if and only if the outer boundary \(\Gamma \) of \(E \) is a circle, where \(d(E) \) is the diameter of \(E \), \(\text{cap}(E) \) is the logarithmic capacity of \(E \), \(\Gamma = \partial D_\infty \), \(D_\infty \) is the unbounded component of \(\mathbb{C} - E \).

Proof. Set
\[
E_1 = \bigcup_{\varepsilon > 0} \left\{ \sum_{i=1}^{n_1} a_i x_i \mid 0 \leq a_i \leq 1, \sum_{i=1}^{n_1} a_i = 1 \right\},
\]
where \(E_1 \) is the closure of \(E_1 \), then \(E_1 \) is a convex set, \(d(E_1) = d(\bar{E}_1) \) and \(\text{cap}(E_1) \geq \text{cap}(E) \).

If \(\text{cap}(E) = 0 \), then statement is true.

We suppose \(\text{cap}(E) > 0 \).

Let \(E_2 = E_1 / \text{cap}(E_1) \). Then \(\text{cap}(E_2) = 1 \) and \(d(E_2) = d(\bar{E}_1) / \text{cap}(E_1) \). There exists a conformal mapping \(h(z) = z + z_0 + \frac{a_1}{2} + \cdots \) from \(\mathbb{C} - E_2 \) onto \(\{ |z| > R \} \). By a theorem of ref. \([4]\), \(R = \text{cap}(E_2) = 1 \). Hence \(d(E_2) \geq 2 \) and \(d(E_2) = 2 \) if and only if \(\partial E_2 \) is a circle\(^{[5]} \). Therefore, \(d(E) = \)
NOTES

d(\overline{E}_1) \geq 2 \cdot \text{cap}(\overline{E}_1) \geq 2 \cdot \text{cap}(E).

If the outer boundary \Gamma of \mathcal{E} is a circle \{|z| = r\}, then d(E) = 2 \cdot \text{cap}(E) = 2r.

If d(E) = 2 \cdot \text{cap}(E), then d(\overline{E}_1) = 2 \cdot \text{cap}(\overline{E}_1). \partial \overline{E}_1 is a circle. It suffices to prove \partial \overline{E}_1 \subset \mathcal{E}. If it is false, there exists a point \(z_0 \in \partial \overline{E}_1\) and \(z_0 \notin \mathcal{E}\). Since \mathcal{E} is a compact set on \mathbb{C}, we choose an open set \(U(z_0)\) containing \(z_0\) such that \(U(z_0) \cap \mathcal{E} = \emptyset\). Let \(F = \overline{E}_1 \setminus U(z_0) \supset \mathcal{E}\). Then \(d(E) = d(\overline{E}_1) \geq d(F) \geq 2 \cdot \text{cap}(F) \geq 2 \cdot \text{cap}(E)\). Therefore \(d(E) = 2 \cdot \text{cap}(E)\) implies \(d(F) = 2 \cdot \text{cap}(F)\), \(\partial F\) is not a circle. It is impossible. Hence \(\partial \overline{E}_1 = \mathcal{E}\). The outer boundary \(\Gamma = \partial \overline{E}_1\) of \mathcal{E} is a circle.

Q.E.D.

Lemma 4. For any point \(z\) on the unit circle \(S^1\) and any neighbourhood \(U\) of \(z\), there exists \(d_0\) such that \(J(f_{d_0}, c) \cap U \neq \emptyset\) for \(d \geq d_0\).

Proof. If it is false, there are \(z_0 \in S^1\) and a neighborhood \(U_0\) of \(z_0\) such that \(J(f_{d_0}, c) \cap U_0 = \emptyset\) for a sequence \(\{d_n\}\) tending to infinity.

Denote \(V_\epsilon = \{|z| < 1 + \epsilon\} - U_0\) and \(V_0 = \{|z| \leq 1\} - U_0\). Lemma 3 implies \(\text{cap}(V_0) < 1\). A theorem in ref. [4] says that \(\text{cap}(V_\epsilon) \rightarrow \text{cap}(V_0)\), \(\text{cap}(V_{\epsilon_0}) < 1\) for some small \(\epsilon_0\). From Lemma 1 and the above assumption, \(J(f_{d_0}, c)\) is contained in \(V_\epsilon\) for \(n\) large enough. \(\text{cap}(J(f_{d_0}, c)) \leq \text{cap}(V_{\epsilon_0}) < 1\). This contradicts with \(\text{cap}(J(f_{d_0}, c)) = 1^{[d]}\).

Q.E.D.

Lemmas 1, 2 and 4 imply the following theorem:

Theorem 1. For any fixed \(c\) (\(|c| \neq 1\)), \(J(f_{d_0}, c) \rightarrow S^1\) in Hausdorff metric as \(d \rightarrow \infty\).

For \(|c| = 1\), \(c = e^{2\pi i \theta}\), we consider the case \(\theta = \frac{p}{q}\) being a rational number in the following. In this case, \(A = \{d \theta \mod 1\}_{\theta \in \mathbb{Q}/\mathbb{Z}}\) is a finite subset of \(\mathbb{T} = \mathbb{R}/\mathbb{Z}\).

If the orbit \(|P^q_{d_0} (0)|_{n \geq 1}\) is contained in \(S^1\) for some \(d\), then

\[
(d \theta - \theta) \mod 1 = \frac{1}{3}
\]

or

\[
(d \theta - \theta) \mod 1 = \frac{2}{3}.
\]

When \((d \theta - \theta) \mod 1 = \frac{1}{3}\), there are two possibilities

\[
\left((d \theta - \theta) \mod 1 = \frac{1}{3}, \quad d (\theta + \frac{1}{6}) \mod 1 = \frac{1}{3} \right)
\]

or

\[
\left((d \theta - \theta) \mod 1 = \frac{1}{3}, \quad d (\theta + \frac{1}{6}) \mod 1 = \frac{2}{3} \right).
\]

It is easy to check that the last case is impossible.

When \((d \theta - \theta) \mod 1 = \frac{2}{3}\), the same things can be discussed.

We conclude that the orbit \(|P^q_{d_0} (0)|_{n \geq 1}\) is contained in \(S^1\) if and only if

\[
\left((d \theta - \theta) \mod 1 = \frac{1}{3}, \quad d (\theta + \frac{1}{6}) \mod 1 = \frac{1}{3} \right)
\]

or