P-ADIC SEMI-MONTEL SPACES AND POLAR INDUCTIVE LIMITS

N. DE GRANDE-DE KIMPE and C. PEREZ-GARCIA

ABSTRACT. In this paper we give a characterization of p-adic semi-Montel spaces which allows us to describe the finest polar semi-Montel topology coarser than the original topology of a locally convex space. As an application we derive that every polar semi-Montel space is a polar inductive limit of a family of nuclear spaces. We also pay attention to the connection with compactifying operators.

§1. INTRODUCTION.

1. Throughout this paper \(\mathbb{K} \) is a complete non-archimedean non-trivially valued field with valuation \(|.| \). For the basic notions concerning locally convex spaces over \(\mathbb{K} \), not explicity mentioned below, we refer to [7].

WE ONLY CONSIDER LOCALLY CONVEX SPACES \(E \) OVER \(\mathbb{K} \) WHICH ARE HAUSDORFF AND SUCH THAT THEIR TOPOLOGICAL DUAL \(E' \) SEPARATES THE POINTS OF \(E \).

2. Let \(E \) be a locally convex space. A subset \(X \) of \(E \) is called compactoid if for every zero-neighbourhood \(U \) in \(E \)

\(^1\)Research partially supported by Grant DGICYT PS90-100
there exists a finite set S in E such that $X \subset \text{co}S + U$, where $\text{co}S$ is the absolutely convex hull of S. Obviously every compactoid set is bounded. If in E every bounded subset is compactoid then E is called semi-Montel (SM) space (some equivalent definitions are given in Theorem 2.1).

If E is a normed space then E is SM iff E is finite-dimensional. The best known class of infinite-dimensional SM-spaces consists of the nuclear spaces (definition below). In this paper we study further relations between SM-spaces and nuclearity by means of inductive limits. In fact we put ourselves in a more general position. Starting with a locally convex space E, τ we construct the finest SM-topology, τ_{sm}, on E coarser than τ and tackle our problem through the SM-space E, τ_{sm}. At certain points we assume our spaces to be polar (i.e. that they have a fundamental system of zero-neighbourhoods consisting of absolutely convex sets U with $U = U_{oo}$, U_{oo} being the bipolar of U). The fundamental reason behind this is that every nuclear space is polar whereas an SM-space E needs not to be polar even when its dual E' separates the points of E, as we show in the following example.

Example. First let E be any infinite-dimensional K-vector space and consider on E the finest locally convex topology $\tau(E,E^*)$. A basis of zero-neighbourhoods for this topology consists of all the absolutely convex and absorbing subsets of E. It is easy to see that $(E,\tau(E,E^*))' = E^*$, the algebraic dual of E, and that every $\tau(E,E^*)$-bounded subset of E is finite-dimensional. Hence, $(E,\tau(E,E^*))$ is a polar SM-space.

Take now $E=l^\infty$ and suppose K is not spherically complete. Let $P:E \to E/\text{c}_0$ be the canonical surjection and define a seminorm q on E by $q(x) = \|P(x)\|_{E/\text{c}_0}$ $(x \in E)$. Finally, consider on E the Hausdorff topology τ generated by all the $\sigma(E,E^*)$-continuous seminorms and q (where $\sigma(E,E^*)$ denotes the weak topology corresponding to $\tau(E,E^*)$). Then obviously $\sigma(E,E^*) \subset \tau \subset \tau(E,E^*)$. Hence $(E,\tau)'$ separates the points of E and by [7], 7.5 we have that E,τ is an SM-space. However the space E,τ is not a polar space (see [4], p.6).

3. A continuous linear map $(T \in \mathcal{L}(E,F))$ from E to a locally convex space F is said to be compactifying $(T \in \mathcal{C}(E,F))$