A NEW CHARACTERIZATION OF GUNDERSEN'S EXAMPLE OF TWO MEROMORPHIC FUNCTIONS SHARING FOUR VALUES

MARTIN REINDERS

ABSTRACT. Let \(f \) and \(g \) be nonconstant meromorphic functions sharing four values \(1M \) and satisfying \(f^{-1}(\{a\}) \subset g^{-1}(\{b\}) \) for two values \(a, b \) not shared by \(f \) and \(g \). Then either
\[f = T \circ g \]
with a Möbius transformation \(T \) or
\[f = L \circ \hat{f} \circ h \]
and
\[g = L \circ \hat{g} \circ h, \]
where
\[\hat{f}(z) = (\exp z + 1)/(\exp z - 1)^2 \]
and
\[\hat{g}(z) = (\exp z + 1)^2/(8(\exp z - 1)) \]
are the functions in Gundersen's example [1], \(L \) is a Möbius transformation and \(h \) is an entire function.

1. INTRODUCTION AND RESULTS

In this paper the term "meromorphic" will always mean meromorphic in the complex plane \(\mathbb{C} \). Two meromorphic functions \(f \) and \(g \) share the value \(a \in \mathbb{C} \) IM (ignoring multiplicities), if \(f^{-1}(\{a\}) = g^{-1}(\{a\}) \). If, in addition, every \(p \)-fold \(a \)-point \(z_0 \) of \(f \) is also a \(p \)-fold \(a \)-point of \(g \), \(p = p(z_0) \), then \(f \) and \(g \) share the value \(a \) CM (counting multiplicities).

We will use the standard notations and results of the Nevanlinna theory (see [3] for example).

R. Nevanlinna proved the following two classical uniqueness theorems:

Theorem A (Five-point-theorem [5, 6]). If \(f \) and \(g \) are nonconstant meromorphic functions sharing five distinct values \(1M \) then \(f = g \).

Theorem B (Four-point-theorem [5, 6]). If \(f \) and \(g \) are distinct nonconstant meromorphic functions sharing four distinct values \(a_1, \ldots, a_4 \) CM, then \(f = T \circ g \) with a Möbius transformation \(T \). Moreover, two of the four values, \(a_3 \) and \(a_4 \), say, are Picard exceptional values of \(f \) and \(g \), and the cross-ratio \((a_1, a_2, a_3, a_4) \) equals \(-1\).

Theorem B was improved by Gundersen:

Theorem C ([2]). If \(f \) and \(g \) are distinct nonconstant meromorphic functions sharing two values \(CM \) and another two values \(1M \), then the conclusion of Theorem B remains valid.

However, Gundersen showed that the condition CM cannot be dropped completely in Theorem B. In [1] he gave the following example: let

\[
\hat{f}(z) := \frac{e^z + 1}{(e^z - 1)^2} \quad \text{and} \quad \hat{g}(z) := \frac{(e^z + 1)^2}{8(e^z - 1)}. \tag{1}
\]

Then \(\hat{f} \) and \(\hat{g} \) share the values 0, 1, \(\infty \) and \(-1/8\). All zeros and 1-points are simple for \(\hat{f} \) and double for \(\hat{g} \), whereas all poles and \(-1/8\)-points are double for \(\hat{f} \) and simple for \(\hat{g} \). In particular, none of the values is shared CM and the conclusion of Theorem B does not hold.

1991 Mathematics Subject Classification. 30D35.
For each shared value \(a \in \{0, 1, \infty, -1/8\} \), either \(\hat{f} \) or \(\hat{g} \) has only multiple \(a \)-points. Conversely, \(\hat{f} \) and \(\hat{g} \) is (up to a Möbius transformation and composition with an entire function) the only pair of functions with this property:

Theorem D ([7]). Let \(f \) and \(g \) be nonconstant meromorphic functions sharing four distinct values \(a_1, \ldots, a_4 \). Assume that for every \(\nu = 1, \ldots, 4 \) either \(f \) or \(g \) has only multiple \(a_\nu \)-points. Then

\[
f = L \circ \hat{f} \circ h \quad \text{and} \quad g = L \circ \hat{g} \circ h
\]

with a Möbius transformation \(L \) and an entire function \(h \).

The functions \(\hat{f} \) and \(\hat{g} \) in Gundersen’s example have another interesting property. Since

\[
\hat{f}(z) + \frac{1}{2} = \frac{e^{2z} + 3}{2(e^z - 1)^2} \quad \text{and} \quad \hat{g}(z) - \frac{1}{4} = \frac{e^{2z} + 3}{8(e^z - 1)}
\]

we have

\[
\hat{f}(z) = -\frac{1}{2} \iff \hat{g}(z) = \frac{1}{4}.
\]

In this paper we determine all pairs of functions \(f \) and \(g \) sharing four values and satisfying

(2)

\[
f(z) = a \implies g(z) = b
\]

for two values \(a \) and \(b \) not shared by \(f \) and \(g \). Of course, if \(f = T \circ g \) with a Möbius transformation \(T \) then (2) holds whenever \(a = T(b) \) and \(b \) is an arbitrary complex value. Apart from this trivial case, property (2) characterizes Gundersen’s example uniquely (up to a Möbius transformation and composition with an entire function):

Theorem 1. Let \(f \) and \(g \) be distinct meromorphic functions sharing four distinct values \(a_1, \ldots, a_4 \) IM. If there exist \(a, b \in \hat{C} \setminus \{a_1, \ldots, a_4\} \) satisfying (2), then either

(3)

\[
f = T \circ g
\]

with a Möbius transformation \(T \) or

(4)

\[
f = L \circ \hat{f} \circ h \quad \text{and} \quad g = L \circ \hat{g} \circ h
\]

with a Möbius transformation \(L \) and an entire function \(h \).

2. PRELIMINARIES FOR THE PROOF OF THEOREM 1

Let \(f \) and \(g \) be distinct nonconstant meromorphic functions sharing four distinct finite values \(a_1, \ldots, a_4 \). For \(r > 0 \) let \(T(r) := \max\{T(r, f), T(r, g)\} \). We write \(\phi(r) = S(r) \) for every function \(\phi : (0, \infty) \to \mathbb{R} \) satisfying \(\phi(r)/T(r) \to 0 \) for \(r \to \infty \) possibly outside a set of finite Lebesgue measure.

We call \(z_0 \) a \((p, q)\)-fold \(a_\nu \)-point (of \(f \) and \(g \)) if \(f(z_0) = a_\nu \) with multiplicity \(p \) and \(g(z_0) = a_\nu \) with multiplicity \(q \). \(N_{(p, q)}(r, a_\nu) \) denotes the counting function of all the \((p, q)\)-fold \(a_\nu \)-points where each point is counted once.

Following [4], we define

\[
\psi = \frac{f'g'(f-g)^2}{(f-a_1)(f-a_2)(f-a_3)(f-a_4)(g-a_1)(g-a_2)(g-a_3)(g-a_4)}.
\]