Two results on arithmetical functions

BERND GREUEL

Abstract: Generalizing two results of Rieger [8] and Selberg [10] we give asymptotic formulas for sums of type

\[\sum_{n \leq x, n \equiv a \pmod{k}} \chi(n) \] and \[\sum_{n \leq x, n \equiv a \pmod{k}} \chi(n), \]

where \(\chi \) is a suitable multiplicative function, \(f_1, \ldots, f_r \) are “small” additive, prime-independent arithmetical functions and \(k, l \) are coprime. The proofs are based on an analytic method which consists of considering the Dirichlet series generated by \(\chi(n)z_1^{f_1(n)} \cdots z_r^{f_r(n)}, z_1, \ldots, z_r \) complex.

Keywords: arithmetical function, arithmetic progression, prime-independent

Math. Subject Classification: 11N37

1 Introduction

Selberg [10] proved in 1954

\[\sum_{n \leq x, \omega(n) = k} 1 = x Q(\log \log x) / \log x + O \left(x (\log \log x)^k (\log x)^{-2} \right), \]

where \(Q(x) \) is a polynomial of degree \(\leq k - 1 \).

Rieger [8] used Selberg’s method to prove

\[\sum_{n \leq x, \omega(n) = qr} 1 = x/(kq) + O \left(x (\log x)^{\text{Re}(\exp(2\pi i/q) - 1)} \right) + O \left(\frac{x}{\log x} \right) \]

for natural numbers \(k, l, q, r \), where \(k, l \) are coprime.

To estimate sums of type

\[(1) \sum_{n \leq x, n \equiv a \pmod{k}} \chi(n) \quad \text{or} \quad \sum_{n \leq x, n \equiv a \pmod{k}} \chi(n), \]

\(f_1, \ldots, f_r \) are suitable prime-independent additive functions and \(k, l \) are coprime.
where χ is a suitable multiplicative function, f_1, \ldots, f_r are additive functions, taking only nonnegative integer values and k, l coprime, we first have to give an approximation of

$$F_{k, l}(x; z_1, \ldots, z_r) := \sum_{n \leq x \atop n \equiv i \pmod{k}} \chi(n) z_1^{f_1(n)} \cdots z_r^{f_r(n)}.$$

Choosing z_1, \ldots, z_r appropriately in (2) and using an orthogonality relation we derive an estimation for the first sum in (1).

Since f_1, \ldots, f_r take only nonnegative integer values, $F_{k, l}(x; z_1, \ldots, z_r)$ is a polynomial in z_1, \ldots, z_r, where the coefficient of $z_1^{z_1} \cdots z_r^{z_r}$ is the second sum in (1).

2 Preliminaries

Definition We call a $(r + 1)$-tupel (χ, f_1, \ldots, f_r) of arithmetical functions admissible, if

(i) χ is multiplicative, such that there is an $\alpha \in \mathbb{R}_+$ with $\chi(p) = \alpha$ for all prime p.

(ii) f_1, \ldots, f_r are additive, taking only nonnegative integers and $f_i(p) = 1$ for $i = 1, \ldots, r$ and every prime p.

(iii) For $\varrho \in \mathbb{R}_{\geq 0}$ we define

$$\sigma_0(\varrho) := \inf_{\varrho > 1/2} \left\{ \sum_p \sum_{\nu \geq 2} \left| \chi(p^\nu) \right| \varrho^{f_1(p^\nu) + \cdots + f_r(p^\nu)} p^{-\nu \varrho} < \infty \right\},$$

where we demand $1 < R := \sup \{ \varrho \geq 0 \mid \sigma_0(\varrho) < 1 \}$.

Furthermore we define $z := (z_1, \ldots, z_r) \in \mathbb{C}^r$ and $z^u := z_1^{u_1} \cdots z_r^{u_r}$. Throughout this article we write \mathbb{N} for the positive and \mathbb{N}_0 for the nonnegative integers.

Remark

- The condition (ii) can be weakened only to assume $f_i(p) = f_i(2) \neq 0$ and $f_i(n)/f_i(2)$ nonnegative integral, where $f_i(p)$ is not necessarily an integer. (cf. [4]).

- The condition $R > 1$ is necessary, since we have to analyze some in $|z| < R$ analytic function on $|z| = 1$ (cf. Delange [2] for the definiton of R).

A sufficient condition for $R > 1$ is, if for an $\varepsilon \in [0, 1/2]$ and every $k \in \mathbb{N}_0$ (cf. Theorem 5.3 in [1])

$$\chi(n) \ll n^\varepsilon \quad \text{and} \quad f_i(p^k) \ll k$$

holds. Such functions are called prime–independent.

The triple (χ, ω, Ω) with $\chi \in \{1, \mu^2, \tau_\alpha \}$ is therefore admissible, where μ is the Möbius function, $\tau_\alpha(n)$ is the extension of the divisor function τ (cf. [1], [11] for the definition of τ_α). By $\omega(n)$ (resp. $\Omega(n)$) we denote the number of different (with multiplicity) prime factors of n. Other interesting examples of admissible functions one can find in [3], [11] or [9].