TENSOR PRODUCT SURFACES OF EUCLIDEAN PLANE CURVES

Ion MIHAI, Bernard ROUXEL

In honour of Professor KATSUMI NOMIZU on the occasion of his seventieth birthday

ABSTRACT

Recently B.Y. CHEN initiated the study of the tensor product immersion of two immersions of a given Riemannian manifold [31. In [6] the particular case of tensor product of two Euclidean plane curves was studied. The minimal one were classified, and necessary and sufficient conditions for such a tensor product to be totally real or complex or slant were established. In the present paper we study for tensor product of Euclidean plane curves the problem of B.Y. CHEN : to what extent do the properties of the tensor product immersion \(f \otimes h \) of two immersions \(f, h \) determines the immersions \(f, h \) ? [3]

Key words : tensor product immersions, minimal surfaces, Chen surfaces.

1991 Mathematics Subject Classification : 53 A 05

1. Surfaces in \(\mathbb{E}^4 \)

Recall some results about surfaces \(M^2 \) in \(\mathbb{E}^4 \). For such a surface the set of focal points of the normal space \(T_m M^2 \) at a point \(m \) of \(M^2 \) is a conic \(F \) (the KOMMERELL conic). Sometimes another conic is used in the normal plane : the ellipse of normal curvature \(G \). \(F \) and \(G \) are polar w.r.t. a unit circle centered at \(m \) in the normal plane. We need for the following theorems the equation of \(F \). At \(m \in M^2 \) we choose an orthonormal frame \(\{ e_1, e_2, e_3, e_4 \} \) with \(e_1, e_2 \in T_m M^2 \), \(e_3, e_4 \in T_m^\perp M^2 \). Then we have the usual equations for this moving frame,

\[
\begin{align*}
\frac{dm}{dt} &= \omega^1 e_1 + \omega^2 e_2, \\
\frac{d\omega}{dt} &= \omega^i_j e_j, \\
\omega_i^j + \omega^j_i &= 0, \\
\omega_i^j &= \omega^{ik}_j, \\
\end{align*}
\]

where \(\omega^i_j \) and \(\omega_i^j \) are coefficients of the moving frame.

\(F \) is the set of \(p = x e_3 + y e_4 \) satisfying:

1. \(X^2 \left[(h_{12}^3)^2 - h_{11}^3 h_{22}^3 \right] + XY \left[2h_{12}^3 h_{11}^4 h_{12}^4 - h_{11}^4 h_{22}^4 \right] + Y^2 \left[(h_{12}^4)^2 - h_{11}^4 h_{22}^4 \right] \]

or

2. \((X h_{12}^3 + Y h_{12}^4)^2 - (X h_{11}^3 + Y h_{11}^4 - 1) (X h_{22}^3 + Y h_{22}^4 - 1) = 0. \)

We consider now characterizations of special surfaces of \(\mathbb{E}^4 \) using properties of \(F \).
a) **Surfaces** M^2 **with null Gaussian curvature** K.

K is defined by $Dw^2_1 = K w^1 \wedge \omega^2$, and then $K = - (h_{12}^3)^2 - (h_{12}^4)^2 + h_{11}^3 h_{22}^2 + h_{11}^4 h_{22}^4$.

We see from (1) that M^2 have null Gaussian curvature if and only if F is an orthogonal hyperbola.

b) **Surfaces with null normal curvature** K_N.

K_N is defined by $Dp^4_3 = - K_N w^1 \wedge \omega^2$ and then $K_N = h_{12}^3 (h_{22}^3 h_{11}^4) + h_{12}^4 (h_{11}^3 - h_{22}^3)$.

From equation (2) we see that F is the union of two straight lines if and only if $K_F = 0$.

c) **Ruled surfaces** of E^4.

If M^2 is a ruled surface of E^4 generated by straight lines Δ, if we choose at any point $m \in M^2$ the tangent vector on Δ, then $d_e = 0$ for $\omega^2 = 0$ and then $h_{11}^3 = h_{11}^4 = 0$. We see from (1), that in this case F is a parabola.

d) **Minimal surfaces**

They satisfy $H = 0$, where H is the mean curvature vector

$$H = \frac{1}{2} \left\{ \left(h_{11}^3 + h_{22}^3 \right) e_3 + \left(h_{11}^4 + h_{22}^4 \right) e_4 \right\}$$

Then from (1) M^2 is a minimal surface if and only if the center of F is m.

e) **CHEN surfaces**

They are defined by $a(H) = 0$ where $a(H)$ is the allied mean curvature vector.

We see in [7] that M^2 is a CHEN surface if and only if H is an axis of F. If the equation of F is $Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$, the condition is

$$B(E^2 - D^2) + DE(A - C) = 0.$$

f) **Pseudo-umbilical surfaces**

They are defined by $A_H = \lambda I$ where A_H is the shape operator associated with the normal vector $\frac{H}{|H|}$.

It is easy to show that M^2 is pseudo-umbilical if and only if F is the union of two straight lines with H as axis of symmetry.

g) **Surfaces for which F is a circle** (studied by R. CALAPSO [2]) or G is a circle (studied by O. BORUVKA [1]).