ON A CONJECTURE OF J. WEIDMANN

Frank Mantlik

ABSTRACT. Consider the Sturm-Liouville differential expression $l(y) = -y'' + q(x)y$ on an interval (a, b) and assume that l is in the limit point case at b. Fix $c \in (a, b)$ and let L_a, L_b be self-adjoint realizations of l in $L^2(a, b)$, $L^2(c, b)$ respectively. If L_b has purely absolutely continuous spectrum in an interval J and if the spectral function ρ_b of L_b satisfies some mild growth conditions then the spectrum of L in J is shown to be purely absolutely continuous, too. Our result confirms a conjecture of J. Weidmann (1982). It had been shown by del Rio Castillo (1988) that in Weidmann's original formulation this conjecture is false.

1. INTRODUCTION.

In [12] J. Weidmann formulated the following conjecture:
(C) Let l denote a formally self-adjoint differential expression on (a, b) and L a self-adjoint realization. For some $c \in (a, b)$ let L_a and L_b be self-adjoint realizations of l on (a, c) resp. (c, b). If L_a or L_b have purely absolutely continuous spectrum in an interval $[\mu_1, \mu_2]$ then the same is true for L.

It has been shown by del Rio Castillo [3] that in this form the conjecture
is false. Even the stronger hypothesis that each self-adjoint realization L_a (or L_b) has purely absolutely continuous spectrum in $[\mu_1, \mu_2]$ cannot guarantee that the spectrum of L is purely absolutely continuous, too! However, it could be shown in [7] that the conclusions of the above conjecture hold if some additional "growth conditions" are imposed on the spectral function ρ_b of L_b.

The aim of the present paper is to weaken the assumptions of [7] as far as possible. We are going to show for a Sturm-Liouville operator l that two coupled L^p-conditions on the derivative ρ'_{b} of ρ_{b} are sufficient to imply the absolute continuity of the spectral function ρ of L. Moreover we obtain additional smoothness properties of ρ regardless of the behaviour of the differential expression l at the endpoint a. It is of some interest also that the conditions we impose on ρ_{b} can be translated into conditions on the boundary behaviour of the Titchmarsh-Weyl coefficient m_{b} of the operator L_{b} since from a practical point of view the coefficient m_{b} is more easily accessible than the corresponding spectral function ρ_{b}.

2. STATEMENT OF THE RESULTS.

Let us consider the Sturm-Liouville differential expression

\begin{equation}
(2.1) \quad l(y) = -y'' + q(x)y, \quad x \in (a, b), \quad -\infty < a < b < +\infty,
\end{equation}

where q is real-valued and locally integrable. We shall assume that the limit-point case occurs at b. The endpoint a may be limit-circle or limit point. Now fix $c \in (a, b)$ and let L, L_{a}, L_{b} be self-adjoint realizations of l in $L^2(a, b), L^2(a, c), L^2(c, b)$ respectively such that the boundary conditions of L, L_{a} coincide at a and the boundary conditions of L_{a}, L_{b} coincide at c. (There is no boundary condition at the point b).

Following [7] e.g. (see also [2], [6]) there exist two functions m_{a}, m_{b} (the Titchmarsh-Weyl coefficients of L_{a}, L_{b}), analytic in the upper half-plane $C_{+} = \{ \lambda \in \mathbb{C} \mid \text{Im}\lambda > 0 \}$ such that

\begin{equation}
(2.2) \quad \text{Im}m_{a}(\lambda) < 0, \quad \text{Im}m_{b}(\lambda) > 0 \quad \text{on} \quad C_{+}.
\end{equation}

The spectral function ρ_{b} of L_{b} is a nondecreasing real-valued function.