On Frobenius Groups II:
Universal completion of nearfields of finite degree
over a field of reference

by

Hans Zassenhaus

Introduction: A group of permutations G of a letter set N is said to be a Frobenius group if it is transitive and if the identity permutation is the only member of G fixing more than one letter.

In abstract group theory G is characterized by the existence of a self normalizing subgroup G_0 intersecting trivially any G-conjugate G_0'. Knowing G_0 we obtain a faithful permutation representation of G as Frobenius group by application of the left multiplicative action of G on the set N formed by the G_0-right cosets. Here G_0 is represented as stabilizer of the coset G_0, denoted also as O.

The elements of G with no fix element, together with 1_G, form the Frobenius kernel $K(G)$ of G. It is invariant under the inner automorphismus of G, but it is not necessarily a subgroup. On the other hand, if N is finite then $K(G)$ is known to be a regular permutation group of N (s.[4]) which is nilpotent in case $G_0 \ast 1$ (s.[5]).

If $K(G)$ is a regular permutation group $\ast 1$ of N then we choose a second element e of N and define two binary operations, say $+$ and \cdot, on N according to

\begin{align*}
(0.1a) \quad & u(O) + v(O) = uv(O) \quad (u, v \in K(G)), \\
(0.1b) \quad & a(e) \cdot x = a(x) \quad (a \in G_0, x \in N),
\end{align*}

so that N turns into a $+$group N^+ (the additive group) and
G_0(e) turns into a group \(N^0 \) (the multiplicative group of \(N \)) with \(e \) as unit element. There holds the right distributive law

\[(0.1c) \quad a \cdot (x+y) = a \cdot x + a \cdot y \quad (a \in N^0; \ x, y \in N)\]

and the associative law of multiplication

\[(0.1d) \quad a \cdot (b \cdot x) = (a \cdot b) \cdot x \quad (a, b \in N^0; \ x \in N),\]

so that the multiplication is fix-point-free:

\[(0.1e) \quad \text{If} \quad a \cdot x = x \ast 0 \quad (a \in N^0, \ x \in N) \quad \text{then} \quad a = e.\]

The permutations belonging to \(G \) are uniquely presented in the form

\[(0.1f) \quad g = \left(\begin{array}{c} x \\ a \cdot x + b \end{array} \right) \quad (a \in N^0, \ b \in N)\]

or

\[g(x) = a \cdot x + b\]

where \(a, b \) are characterized by

\[(0.1g) \quad b = g(0) \quad a = g(e) - b,\]

and \(x \) runs through the letter set \(N \).

A set \(N \) with two binary operations \(+, \circ\) is said to be a nearfield, if \(N \) is a \(+\)group with neutral element \(0 \), and if the elements \(a \in N \) for which \(a \cdot x \) is defined for all \(a \) of \(N \), form a group \(N^0 \), say with unit element \(e \ast 0 \), and if, moreover, the rules \((0.1c-e)\) obtain.

It follows that the permutations:

\[(0.2a) \quad \left(\begin{array}{c} x \\ a \cdot x + b \end{array} \right) \quad (a \in N^0, \ b \in N)\]

of the elements \(x \) of \(N \) form a Frobenius group \(G \) acting on \(N \). Its Frobenius kernel is the regular normal subgroup formed by the translation mappings

\[(0.2b) \quad \left(\begin{array}{c} x \\ x + b \end{array} \right) \quad (b \in N)\]

of the elements \(x \) of \(N \). The stabilizer of \(0 \) is the subgroup \(G_0 \) formed by the left multiplication mappings.