1. INTRODUCTION

A numerical method is proposed for the fast solving of parabolic boundary control problems. The state is governed by a linear or nonlinear parabolic differential equation. If the cost function is a quadratic functional of state and control, the optimal control can be characterized by an equation of the form $u = \mathcal{K}(u)$, where the nonlinear operator \mathcal{K} has some special properties mentioned in Section 3. The discretized problem (Section 4) is a large system of linear or nonlinear equations. This system can be solved by the multi-grid iteration of the second kind described in Section 5. Numerical examples are reported for a linear problem and a problem with constrained control.

2. FORMULATION OF THE CONTROL PROBLEM

Let Q be the cylinder $\Omega \times (0,T)$, where $\Omega \subset \mathbb{R}^d$, $d \geq 1$. Σ_0 is a subset of the lateral boundary $\Sigma = \partial \Omega \times (0,T)$. As a model problem we formulate the following linear problem.

Let f, g, y_0 be fixed functions defined on Q, $\Sigma - \Sigma_0$, and Ω, respectively, while the control u is a varying function defined on Σ_0.

$y = y(u) = y(x,t;u)$ is the solution of the following parabolic initial-boundary value problem:

(1) \[y_t + Ay = f(x), \quad Bv = \begin{cases} u & (x,t) \in (\Sigma_0), \\ g & (x,t) \in (\Sigma - \Sigma_0) \end{cases}, \quad y(x,0;u) = y_0(x) \quad (\Omega). \]

A denotes an elliptic differential operator, B is a boundary operator. E.g., $A = -\Delta$, $B = \partial/\partial n$. We want to approximate a given function z_d by the final state:

$y(x,T;u) \approx z_d(u)$. A possible cost function is

(2) \[J(v) = \| y(x,T;v) - s_d \|_{L^2(\Omega)}^2 + \delta \| v \|_{L^2(\Sigma_0)}^2, \quad \delta > 0. \]

The control is varying in a convex set $U_{ad} \subset L^2(\Sigma_0)$ of admissible controls. The solution $u \in U_{ad}$ of the minimization problem

(3) \[J(u) = \min \{ J(v) : v \in U_{ad} \} \]

can be characterized by means of the adjoint state $p(u)$, which is the solution of
the following parabolic equation with negative time orientation:

\[-p_t + A^* p = 0 \quad (\Omega), \quad \partial p = 0 \quad (\Sigma), \quad p(x,T;u) = y(x,T;u) - z_d(x) \quad (\Omega), \]

where the adjoint operator \(A^* \) and \(C \) satisfy Green's formula

\[(Ay, p)_{L^2(\Omega)} - (y, A^* p)_{L^2(\Omega)} = (y, \partial p)_{L^2(\Omega)} - (\partial y, p)_{L^2(\Omega)}. \]

In the case of \(A = -\Delta \), \(B = \partial / \partial n \), we have \(A^* = -\Delta \), \(C = \partial / \partial n \).

If \(U_{ad} = L^2(\Sigma_o) \) the solution \(u \) of (3) is given by

\[u = -\frac{1}{\alpha} p(u) \big|_{\Sigma_o} \]

(cf. Lions [7]). If \(U_{ad} = \{ u \in L^2(\Sigma_o) : u \in I \text{ a.e.} \} \) with an interval \(I = [\mu_{\text{min}}, \mu_{\text{max}}] \), the optimal solution satisfies

\[u = \left[-\frac{1}{\alpha} p(u) \right]_{\Sigma_o} \]

where \([\xi]_I = \xi \text{ if } \xi \in I, \left[\xi \right]_I = \mu_{\text{max}} \text{ if } \xi > \mu_{\text{max}}, \left[\xi \right]_I = \mu_{\text{min}} \text{ if } \xi < \mu_{\text{min}}\).

The control function may also appear in other parts of Eq. (1); the Neumann condition may be replaced by a Dirichlet condition. Also the cost function can be changed (observation of the total state or observation on the boundary). The corresponding equations (4) and (6) are given in [2].

In the following we formulate a nonlinear control problem. Let \(y(u) \) be the solution of

\[y_t + \mathcal{A}(y) = 0 \quad (\Omega), \quad \mathcal{B}(y) = \left\{ u \in L^2(\Sigma_o) : u \in I \text{ a.e.} \right\}, \quad y(x,0;u) = y_0(x) \quad (\Omega), \]

where \(\mathcal{A} \) and \(\mathcal{B} \) are nonlinear operators, e.g., \(\mathcal{A}(y) = - (a(y)y_x)_x \), \(\mathcal{B}(y) = b(y) + \partial y / \partial n \).

Denote the derivatives of \(\mathcal{A}(y) \) and \(\mathcal{B}(y) \) with respect to \(y \) at \(y(u) \) (\(u \) optimal control) by \(A \) and \(B \). Define the boundary operator \(C \) and the function \(\varphi \) by means of Green's identity

\[(Ay, p)_{L^2(\Omega)} - (y, A^* p)_{L^2(\Omega)} = (y, \partial p)_{L^2(\Omega)} - (\partial y, p)_{L^2(\Omega)}. \]

For the example mentioned above we have

\[A z = -(a(y)z_x)_x - (a_y(y)z_x)_x, \]
\[A^* z = -(a(y)z_y)_x + a_y(y)y_x z_x, \]
\[B z = b_y(y)z + \partial z / \partial n, \quad \varphi = a(y), \]
\[\partial p = [b_y(y) - a_y(y) \partial y / \partial n] p + a(y) \partial p / \partial n. \]

The adjoint state \(p = p(y) \) is the solution of the linear parabolic equation (4).

Then the solution \(u \) of (2) can be characterized by

\[u = -\frac{\varphi}{\alpha} p(u) \big|_{\Sigma_o} \quad \text{if } U_{ad} = L^2(\Sigma_o), \]
\[u = \left[-\frac{\varphi}{\alpha} p(u) \big|_{\Sigma_o} \right]_I \quad \text{if } U_{ad} = \{ v \in L^2(\Sigma_o) : v(x) \in I \text{ a.e.} \}. \]

Denoting the right-hand sides of (6a), (6b), (9a), or (9b) by \(\mathcal{K}(u) \) we obtain the equation