SIMPLEX METHOD FOR DYNAMIC LINEAR PROGRAM SOLUTION

V.E. Krivonozhko and A.I. Propoi
Institute for Systems Studies
Moscow, USSR
and
International Institute for Applied Systems Analysis
Laxenburg, Austria 2361

1. INTRODUCTION

In this paper, the extension of the simplex-method, one of the most effective linear programming methods [1,2] to dynamic linear programming [3] is described. The main concept of the static simplex-method—the "global" basis—is replaced by the set of local (for each time period t) bases. It allows us to develop a whole group of finite-step DLP methods: primal, dual and primal-dual methods, each yielding the same solution path as the corresponding static version of the simplex-method. The methods are closely related to the basis factorization approach to DLP problems. We consider a DLP problem in the form:

Problem 1: Find a control \(u = \{u(0), \ldots, u(T-1)\} \) and a trajectory \(x = \{x(0), \ldots, x(T)\} \), satisfying the state equation

\[
x(t+1) = A(t)x(t) + B(t)u(t)
\]

with initial condition

\[
x(0) = x^0
\]

and constraints

\[
G(t)x(t) + D(t)u(t) = f(t)
\]

\[
u(t) \geq 0
\]

which maximize the objective function

\[
J_1(u) = a(T)x(T)
\]
Here \(x(t) \) is the \(n \)-vector of state variables; \(u(t) \) is the \(r \)-vector of control variables; \(f(t) \) is the given \(m \)-vector \((t=0,1,...,T-1)\).

This model is flexible enough and allows various extensions and modifications. The results stated below for Problem 1 can be used with minor changes for these extensions and modifications (see Section 3 and \([4]\)).

Along with the primary Problem 1, statement of the dual problem will be necessary \([4]\).

Problem 2: Find a dual control \(\lambda = \{\lambda(T-1),...,\lambda(0)\} \) and a dual trajectory \(p = \{p(T),...,p(0)\} \), satisfying the costate equations

\[
\begin{align*}
p(t) &= p(t+1)A(t) - \lambda(t)G(t) \\
&= (t = T-1,...,1,0)
\end{align*}
\]

with boundary condition

\[
p(T) = a(T)
\]

and constraints

\[
p(t+1)B(t) - \lambda(t)D(t) \leq 0
\]

which minimize the performance index

\[
J_2(\lambda) = p(0)x^0 + \sum_{t=0}^{T-1} \lambda(t)f(t) .
\]

For this pair of dual problems the conventional duality realizations hold \([4]\).