OPTIMAL SOLUTIONS FOR A CLASS OF POINT RETRIEVAL PROBLEMS

Bernard Chazelle and Herbert Edelsbrunner

Brown Univ. and Techn. Univ. Graz

Abstract

Let P be a set of n points in the Euclidean plane and let C be a convex figure. We study the problem of preprocessing P so that for any query point q, the points of P in $C + q$ can be retrieved efficiently. If constant time suffices for deciding the inclusion of a point in C, we then demonstrate the existence of an optimal solution: the algorithm requires $O(n)$ space and $O(k + \log n)$ time for a query with output size k. If C is a disk, the problem becomes the well-known fixed radius neighbor problem, to which we thus provide the first known optimal solution.

1. Introduction

Let P be a set of n points in the Euclidean plane E^2, and let C be a convex figure. We study the complexity of the following problem: preprocess P so that for any query translate $C_q = C + q$ of C the points in $P \cap C_q$ can be retrieved efficiently. Intuitively, a query corresponds to an arbitrary displacement of C without rotation. We demonstrate the existence of a solution that is optimal in space and time, provided that C satisfies certain weak computational conditions. Specifically, we describe a data structure that requires $O(n)$ space and $O(k + \log n)$ time to answer a query with output size k. The only assumption necessary to the validity of the algorithm is that constant time suffices for deciding whether a point is contained in C. A few other primitive operations must be assumed for the sake of preprocessing. If such operations can be executed in constant time, the data structure can be constructed in $O(n^2)$ time.

The generality of the setting allows a uniform solution of several problems which have been treated separately in the past. If C is a disk, the problem becomes the well-known fixed-radius neighbor problem [BM,C1,CCPY]. The best solution to this problem achieves optimal retrieval time at the cost of $O(n(\log n \log \log n)^2)$ space [CCPY], but also handles queries with non-fixed radius. If C is a triangle or a rectangle then we have restricted versions of the triangular and orthogonal range search problems.

Authors' current address: B. Chazelle: Dept. of Computer Science, Box 1910, Brown Univ., Providence, RI 02912, USA. H. Edelsbrunner: Inst. Inf. Proc., Techn. Univ. Graz, Schießstattg. 4a, A-8010, Graz, Austria. The first author was supported in part by NSF grant MCS 83-03925.
We look at the special case where \(C \) is a convex \(m \)-gon and \(m \) is considered a variable of the problem. For this case, we describe a solution requiring \(O(n + m) \) space and \(O(k + \log n \log m) \) time to compute a \(k \)-point answer.

2. The Geometric and Computational Backdrop

In this section we introduce relevant geometric notions and address the computational assumptions we have to make.

Let \(\mathbb{E}^2 \) denote the Euclidean plane and endow it with a system of Cartesian coordinates \(x \) and \(y \). The directions determined by the \(x \) and \(y \) axes are referred to as horizontal and vertical, respectively. Let \(A \) be a subset of \(\mathbb{E}^2 \). We assume that the reader is familiar with the concepts of interior \(\text{int} \ A \), closure \(\text{cl} \ A \) and boundary \(\partial A \). For two points \(a = (a_x, a_y) \) and \(b = (b_x, b_y) \), we have \(a + b = (a_x + b_x, a_y + b_y) \), and for a real \(\lambda \), \(\lambda a = (\lambda a_x, \lambda a_y) \). These operations are naturally extended to subsets \(A, B \) of \(\mathbb{E}^2 \), i.e. \(A + B = \{ a + b \mid a \in A, b \in B \} \) and \(\lambda A = \{ \lambda a \mid a \in A \} \). For any point \(q \), \(A + q = A + \{ q \} \) is called a translate of \(A \) and is denoted \(A_q \). A is convex if for any points \(a_1 \) and \(a_2 \) in \(A \), the point \(\lambda a_1 + (1 - \lambda)a_2 \) lies in \(A \) for each \(\lambda \) such that \(0 \leq \lambda \leq 1 \). The smallest convex set that contains \(A \) is called the convex hull of \(A \), denoted \(\text{conv} A \). The convex hull of \(\{ a, b \} \) is called a segment.

The model of computation is the standard RAM with infinite real arithmetic — a traditional assumption in computational geometry. Let \(C \) be a convex closed figure with non-empty interior. We leave \(C \) essentially unspecified and therefore must make a minimum number of assumptions on the primitive operations allowed with respect to \(C \). First, we consider the intersection of the boundaries of two translates of \(C \). We define \(S(v, w) = \partial(-C)_v \cap \partial(-C)_w \), for two points \(v \) and \(w \) in \(\mathbb{E}^2 \). By convexity of \(C \), \(S(v, w) \) is either empty or consists of at most two possibly degenerate segments, and thus can be represented in a constant amount of space. This concept is naturally extended to the case where \(v \) and \(w \) are infinitesimally close: this gives \(S(v, w) = S(v, l) = \partial(-C)_v \cap \partial(-C)_{l + 1} \), for \(l \) the line that contains \(v \) and \(w \) (see Fig. 1 for an illustration of the two cases).

We call \(C \) computable if (i) constant time suffices to test for any point \(p \) in \(\mathbb{E}^2 \) whether or not \(p \) is contained in \(C \), and (ii) constant time suffices to compute \(S(v, w) \) for any two, potentially infinitesimally close, points \(v \) and \(w \) in \(\mathbb{E}^2 \). In the remainder of this section, we elaborate on the primitive operations needed and introduce the notion of silo. Let \(L \) (resp. \(R \)) in \(\partial C \) be the point with minimal (resp. maximal) \(z \)-coordinate, and maximal \(y \)-coordinate if not unique.

Lemma 1. If \(C \) is computable, \(L \) and \(R \) can be determined in constant time.

Proof: Let \(l \) be the vertical line through the origin \(O = (0, 0) \). Since \(C \) is computable, \(S(O, l) \) and the lower endpoints \(a \) and \(b \) of the two vertical segments that constitute \(S(O, l) \) can be determined in constant time. Let \(a_x < b_x \); we then have \(L = -b \) and \(R = -a \).