Molecular Interpretation of the Moduli of Elastomeric Polymer Networks of Known Structure

J. P. Queslel and J. E. Mark
Department of Chemistry and the Polymer Research Center,
The University of Cincinnati, Cincinnati, Ohio 45221, USA

The most general molecular theory of rubberlike elasticity is reviewed as a preliminary to its use in the interpretation and understanding of the moduli of model elastomeric materials, i.e., polymer networks prepared in such a way that their structure is relatively well known. Applications are made to both perfect and imperfect networks, with critical evaluation of evidence possibly attributable to equilibrium elastic contributions from interchain entanglements. The relevance and importance of branching theory is covered in some detail.

1 Introduction 137

2 Review of Molecular Theory 137
 2.1 The Phantom Limit 137
 2.2 The Affine Limit 138
 2.2.1 General Comments 138
 2.2.2 Swelling Equilibrium 139
 2.3 Real Networks 139
 2.3.1 Stress-Strain Measurements in Elongation 139
 2.3.2 Swelling Equilibrium 141

3 The Use of Model Networks 141

4 Experimental Data 142
 4.1 Completeness of the Cross-Linking Reaction 142
 4.2 Structure Factors Obtained in Elongation Studies 143
 4.2.1 General Comments 143
 4.2.2 High-Deformation Limit 143
 4.2.3 Low-Deformation Limit 146

5 Perfect End-Linked Networks 148
 5.1 The Parameters x and ζ 148
 5.2 The Parameter h 152

6 Imperfect End-Linked Networks 153
 6.1 Branching Theory 153
 6.2 Structure Factors Obtained in Elongation Studies 156
 6.2.1 High-Deformation Limit 156
 6.2.2 Low-Deformation Limit 157