A CPS-Translation of the $\lambda\mu$-Calculus

Philippe de Groote
INRIA-Lorraine – CRIN – CNRS
Campus Scientifique - B.P. 239
54506 Vandœuvre-lès-Nancy Cedex – FRANCE
e-mail: degroote@loria.fr

Abstract. We present a translation of Parigot's $\lambda\mu$-calculus [10] into the usual λ-calculus. This translation, which is based on the so-called continuation passing style, is correct with respect to equality and with respect to evaluation. At the type level, it induces a logical interpretation of classical logic into intuitionistic one, akin to Kolmogorov's negative translation. As a by-product, we get the normalization of second order typed $\lambda\mu$-calculus.

1 Introduction

During the last three years, several authors have introduced various systems that clarify the computational content of classical proofs [2, 3, 5, 6, 8, 9, 10]. In this paper, we investigate one of these systems, namely Parigot's $\lambda\mu$-calculus [10].

Our investigation tool is merely syntactic: we propose a translation of the $\lambda\mu$-calculus into the well known λ-calculus. This interpretation, which obey a continuation passing style, works for any $\lambda\mu$-term. It is therefore more general than the one introduced by M. Parigot in [11], which works only for bounded $\lambda\mu$-terms.

The notion of continuation has been developed in the framework of programming language semantics in order to model control. Since Griffin's work [6], one knows that there is a connection between classical proofs and control. With this respect, our interpretation enlighten the relation between the $\lambda\mu$-calculus and the notion of control: a μ-abstraction is interpreted as a λ-abstraction whose bound variable stands for some possible continuation.

The main properties of our translation are that it is correct with respect to equality and evaluation: two $\lambda\mu$-terms are equal if and only if their translations are (translation property); the evaluation of a $\lambda\mu$-term may be simulated faithfully by the evaluation of its translation (simulation property).

Up to a slight modification, the interpretation of the typed $\lambda\mu$-calculus that results from our translation does also make sense from a proof-theoretic point of view. It amounts to a negative translation of classical logic into intuitionistic one, akin to Kolmogorov's. This allow us to establish the normalization of second-order classical natural deduction, which is a property that has been recently proven in [12].

1 Actually, M. Parigot proves more, namely strong normalization.
The remainder of this paper is organized as follows. The next section is a short introduction to Parigot's A#-calculus. In Section 3, we define our translation of the \(\lambda \mu \)-calculus into the A:calculus, and we prove its correctness with respect to equality. In Section 4, we address the problem of the correctness of the translation with respect to evaluation. The proof-theoretic interpretation of the translation is investigated in Section 5. Finally we present our conclusions in Section 6.

2 The \(\lambda \mu \)-Calculus

This section is a short introduction to the \(\lambda \mu \)-calculus. The reader may refer to [10, 11, 12] for further details.

The \(\lambda \mu \)-calculus, introduced by M. Parigot in [10], extends the \(\lambda \)-calculus in order to give an algorithmic interpretation to classical proofs. This interpretation is based on cut-elimination as it is the case of intuitionistic logic. Nevertheless, in addition to the so-called logical reductions of intuitionistic logic, some other kind of reduction is needed in order to handle the double-negation rule of classical logic. This gives rise to an extension of the syntax of the \(\lambda \)-calculus (addition of \(\mu \)-abstractions and named terms), and to a new notion of reduction (the one of structural reduction).

The terms of the \(\lambda \mu \)-calculus (\(\lambda \mu \)-terms, for short) are built from two distinct alphabets of variables: the set of \(\lambda \)-variables, and the set \(\mu \)-variables. The raw syntax of the language is given by the following grammar:

\[
T ::= x \mid (\lambda x. T) \mid (T T) \mid (\mu \delta. T) \mid [\delta] T,
\]

where \(x \) ranges over \(\lambda \)-variables, and \(\delta \) ranges over \(\mu \)-variables. A \(\lambda \mu \)-term of the form \(\mu \delta. T \) is called a \(\mu \)-abstraction, and a \(\lambda \mu \)-term of the form \([\delta] T\) is called a named term. The operator \(\mu \) is a binding operator as is \(\lambda \). Therefore, the free occurrences of a \(\mu \)-variable \(\delta \) in \(T \) become bound in \(\mu \delta. T \). In order to be protected from clashes between free and bound variables, we adopt Barendregt’s variable convention [4] for \(\mu \)-variables as well as for \(\lambda \)-variables.

The reduction relation of the \(\lambda \mu \)-calculus is induced by three different notions of reduction. The first one is the usual notion of reduction \(\beta \):

\[
(\lambda x. M) N \rightarrow M[x := N]
\]

where \(M[x := N] \) denotes the usual capture-avoiding substitution.

The second notion of reduction is the one of structural reduction. This notion may be intuitively explained as follows: in a \(\lambda \mu \)-term \(\mu \alpha. M \) of type \(A \rightarrow B \), only the subterms named by \(\alpha \) are really of type \(A \rightarrow B \) (see the typing rules hereafter); hence, when such a \(\mu \)-abstraction is applied to an argument, this argument must be passed over to the subterms named by \(\alpha \). This intuition is formalized as follows:

\[
(\mu \delta. M) N \rightarrow M[\delta \leftarrow N],
\]

where the structural substitution is inductively defined as follows: