\textbf{\textit{\varepsilon-Approximation of Differential Inclusions}}\footnote{Research supported by the California PATH program and by the National Science Foundation under grant ECS9417370.}

Anuj Puri1, Vivek Borkar2 and Pravin Varaiya1

1 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720.
2 Department of Electrical Engineering, Indian Institute of Science, Bangalore 560012, India.

\textbf{Abstract.} For a Lipschitz differential inclusion $\dot{x} \in f(x)$, we give a method to compute an arbitrarily close approximation of $\operatorname{Reach}_f(X_0, t)$ — the set of states reached after time t starting from an initial set X_0. For a differential inclusion $\dot{x} \in f(x)$, and any $\varepsilon > 0$, we define a finite \textit{sample graph} A^ε. Every trajectory ϕ of the differential inclusion $\dot{x} \in f(x)$ is also a "trajectory" in A^ε. And every "trajectory" η of A^ε has the property that $\text{dist}(\dot{\eta}(t), f(\eta(t))) \leq \varepsilon$. Using this, we can compute the \textit{\varepsilon-invariant} sets of the differential inclusion — the sets that remain invariant under \varepsilon-perturbations in f.

\section{Introduction}

A dynamical system $\dot{x} \in f(x)$ describes the flow of points in the space. Associated with a dynamical system are several interesting concepts: from an \textit{invariant set}, points cannot escape; and a recurrent set is visited infinitely often. For the controlled system $\dot{x} = f(x, u)$, the question of whether there is a control $u \in U$ to steer the system from an initial state x_0 to a final state x_f is fundamental.

We approach the subject from the viewpoint of applications and an interest in computational methods. For the differential inclusion $\dot{x} \in f(x)$, we want to compute the invariant sets and the recurrent sets. For the controlled differential equation $\dot{x} = f(x, u)$, we want to determine the control $u \in U$ which steers the system from an initial state x_0 to a final state x_f. And we want to determine the reach set $\operatorname{Reach}_f(X_0, [0,t])$ — the set of states that can be reached from the initial set of states X_0 within time t.

In this paper, we propose a computational approach to solve some of these problems. For a Lipschitz differential inclusion $\dot{x} \in f(x)$ with initial set X_0, we propose a polyhedral method to obtain an arbitrary close approximation of $\operatorname{Reach}_f(X_0, [0,t])$. For a differential inclusion $\dot{x} \in f(x)$, and any $\varepsilon > 0$, we construct a finite \textit{sample graph} A^ε which has the property that every trajectory ϕ of $\dot{x} \in f(x)$ is also a "trajectory" in the graph A^ε. And every "trajectory" η of the finite graph A^ε has the property that $\text{dist}(\dot{\eta}(t), f(\eta(t))) \leq \varepsilon$. Since A^ε is
a finite graph, it can be analyzed using graph theoretic techniques. Using the finite graph A^ϵ, we can compute the ϵ-invariant sets of $\dot{x} \in f(x) = \{ z \in f(x) \}$ — the sets which remain invariant under ϵ-perturbations in f.

In Section 2, we introduce our notation, and define the basic terms. In Section 3, we conservatively approximate the differential inclusion by a piecewise constant inclusion, and obtain an approximation of $Reach_f(X_0, [0, t])$. In Section 4, we obtain a finite graph A^ϵ from the differential inclusion $\dot{x} \in f(x)$, and use it to determine the properties of the differential inclusion. In Section 5, we discuss the application of techniques from Sections 3 and 4 to computing the ϵ-invariant sets of differential inclusions. In Section 6, we apply these methods to compute the invariant sets for two examples: a pendulum moving in the vertical plane, and the Lorenz equations. We also discuss procedures to improve the efficiency of our methods. Section 7 is the conclusion.

2 Preliminaries

Notation

\mathbb{R} is the set of reals and \mathbb{Z} is the set of integers. $B = \{ x : |x| \leq 1 \}$ is the unit ball. For sets $U, V \subseteq \mathbb{R}^n$, $U + V = \{ u + v | u \in U \text{ and } v \in V \}$ and for $\alpha \in \mathbb{R}$, $\alpha U = \{ \alpha u | u \in U \}$. For $\delta > 0$, $B_\delta(x)$ is the δ-ball centered at x, i.e., $B_\delta(x) = \{ y : |y - x| \leq \delta \}$. For $X \subseteq \mathbb{R}^n$, $X_\epsilon = X + \epsilon B$.

For $x \in \mathbb{R}^n$, and $Y \subseteq \mathbb{R}^n$, the distance $\text{dist}(x, Y) = \inf \{|x - y| : y \in Y\}$. For two sets $X,Y \subseteq \mathbb{R}^n$, the Hausdorff distance is $\text{dist}(X,Y) = \inf \{|r : X \subseteq Y + rB \text{ and } Y \subseteq X + rB\}$. Notice, that if $\text{dist}(X,Y) \leq \epsilon$, then for any $x \in X$, $\text{dist}(x, Y) \leq \epsilon$. For $X \subseteq \mathbb{R}^n$, $\text{cl}(X)$ is the closure of X, and $\text{co}(X)$ is the smallest closed convex set containing X. For $X, Z \subseteq \mathbb{R}^n$, the restriction of X to Z is $X|_Z = X \cap Z$. For a set J, the complement of J is J^c. For sets X and Y, the difference $X \setminus Y = \{ z | z \in X \text{ and } z \not\in Y \}$.

A set-valued (multi-valued) function is $f : \mathbb{R}^n \to \mathbb{R}^n$ where $f(x) \subseteq \mathbb{R}^n$. For a set-valued $f : \mathbb{R}^n \to \mathbb{R}^n$, the set-valued function $f_\epsilon : \mathbb{R}^n \to \mathbb{R}^n$ is given by $f_\epsilon(x) = f(x) + \epsilon B$. For $Z \subseteq \mathbb{R}^n$, $f(Z) = \bigcup_{x \in Z} f(x)$. We assume the infinity norm on \mathbb{R}^n (i.e., $|x| = \max\{|x_1|, \ldots, |x_n|\}$).

Differential Inclusions

A differential inclusion is written as $\dot{x} \in f(x)$ where $f : \mathbb{R}^n \to \mathbb{R}^n$ is a set-valued function. Differential inclusions can be used to model disturbances and uncertainties in the system. A differential equation $\dot{x} = f(x, u)$, where $u \in U$ is control or disturbance can be studied as the differential inclusion $\dot{x} \in g(x)$ where $g(x) = \{ f(x, u) | u \in U \}$. The differential inclusion $\dot{x} \in g(x)$ captures every possible behaviour of f.

We say a differential inclusion $\dot{x} \in f(x)$ is Lipschitz with Lipschitz constant k provided $\text{dist}(f(x_1), f(x_2)) \leq k|x_2 - x_1|$. A trajectory $\phi : \mathbb{R} \to \mathbb{R}^n$ is a solution of $\dot{x} \in f(x)$ provided $\phi(t) \in f(\phi(t))$ a.e. We say f is convex-valued when $f(x)$ is convex for every x.