Denotational Versus Declarative Semantics for Functional Programming *

Juan Carlos González Moreno
Dpto. L.S.I.I.S. (U.P.M., Spain)

María Teresa Hortalá González, Mario Rodríguez Artalejo
Dpto. de Informática y Automática. (U.C.M., Spain)

Abstract. _Denotational semantics_ is the usual mathematical semantics for functional programming languages. It is _higher order_ (H.O.) in the sense that the semantic domain D includes $[D 	o D]$ as a subdomain. On the other hand, the usual _declarative semantics_ for logic programs is _first order_ (F.O.) and given by the least Herbrand model. In this paper, we take a restricted kind of H.O. conditional rewriting systems as computational paradigm for functional programming. For these systems, we define both H.O. denotational and F.O. declarative semantics as two particular instances of _algebraic semantics_ over _continuous applicative algebras_. For the declarative semantics, we prove _soundness_ and _completeness_ of rewriting, as well as an _initiality_ result. We show that both soundness and completeness fail w.r.t. the denotational semantics and we present a natural restriction of rewriting that avoids unsoundness. We conjecture that this restricted rewriting is complete for computing denotationally valid F.O. results.

1 Introduction

This work stems from our interest in the integration of logic and functional programming. Though this topic has received much attention in the last years [6,2,7], most of the existing research refers to F.O. languages. The semantic foundation of H.O. logic + functional languages does still need further investigation. Existing approaches propose either to translate H.O. syntax into F.O. syntax [3,4] or to use H.O. logics with a F.O. semantics [13,5].

In our previous work [10], we used _conditional narrowing_ for a restricted kind of H.O. rewriting systems as a computational paradigm for H.O. _functional logic programming_, and we established soundness and completeness results w.r.t. a F.O. declarative semantics induced by a syntactic H.O. into F.O. translation. Subsequently, we realized that the effect of the syntactic translation was equivalent to the direct definition of a F.O. least model semantics, given by an algebra over an infinitary Herbrand universe equipped with a continuous _apply_ operation. We also observed that denotational semantics can be obtained in the same way as a least model over a different H.O. domain D which includes $[D 	o D]$ as a subdomain. The aim of this paper is to show that these ideas lead to a new and interesting view of the semantics of functional languages, well suited to their integration with logic languages.

The organization of the paper is as follows. In Section 2 we develop the basic facts about _applicative expressions_ and _continuous applicative algebras_ (C.A.A.s), which will be the basis of our mathematical semantics. In Section 3 we define a Simple Functional Language (SFL) and explain how to use a kind of infinite H.O. rewriting as its operational semantics. In Section 4 we show that C.A.A.s and a least fixpoint technique can be used to specify both a _F.O. declarative_ and a _H.O. denotational_ semantics for SFL programs. We also present an _initiality result_ for the declarative semantics. In Section 5 we develop several results about _soundness_ and _completeness_ of rewriting w.r.t. both semantics; they show that declarative semantics characterizes the operational behaviour of SFL programs more adequately than denotational semantics. Section 6 summarizes some conclusions and planned lines of future work.

Research supported by the PRONTIC project TIC 89/0104
2 Applicative Expressions and Algebras

First we introduce the basic facts about applicative expressions, algebras, expression evaluation and equations.

2.1 Signatures with constructors

A signature with constructors is any pair $\Sigma = (DC_\Sigma, FS_\Sigma)$ where $DC_\Sigma = \cup DC^a_\Sigma$ and $FS_\Sigma = \cup FS^a_\Sigma$ are ranked sets of constructors and function symbols, respectively. We assume that all the sets DC^a_Σ, FS^a_Σ are mutually disjoint and use the notation $\text{rank}(\phi)$ for the rank of any symbol $\phi \in DC_\Sigma \cup FS_\Sigma$.

2.2 Expressions and patterns

Given a countably infinite set of variables $X, Y, Z \in \text{Var}$, we define the set of applicative expressions $e \in \text{Exp}_\Sigma$ of signature Σ by the following syntax:

$$ e ::= x \mid c \mid f \mid (e_0e_1) $$

An expression (e_0e_1) stands for the application of e_0 to e_1. As usual, we assume that application associates to the left and omit brackets accordingly. Note that any applicative expression can be written in exactly one of the 6 following forms:

- X % variable
- c % constructor
- $(X e_1 \ldots e_m)$ % curried application of a variable
- $(c e_1 \ldots e_m)$ % curried application of a constructor
- $(f e_1 \ldots e_m)$ % curried application of a function symbol

A curried application of a constructor or function symbol is called partial, exact or exceeding according to the case that the number m of arguments is less than, equal to or greater than the symbol's rank. We define 2 special kinds of expressions as follows:

- Patterns $s, t \in \text{Ptr}_\Sigma$

 $$ t ::= X \mid c \mid f \mid (c t_1 \ldots t_m) $$

 where $X \in \text{Var}$ and $c \in DC^a_\Sigma$ (for $1 < m < n$)

 $$(f t_1 \ldots t_m) \in FS^a_\Sigma, 1 \leq m < n$$

- First order expressions $e \in \text{FOExp}_\Sigma$

 $$ e ::= X \mid c \mid f \mid (c e_1 \ldots e_n) $$

 where $X \in \text{Var}$ and $c \in DC^a_\Sigma$ (for $0 < n$)

 $$(f e_1 \ldots e_n) \in FS^a_\Sigma, 0 < n$$

We also define the set of first order patterns as $\text{FOPtr}_\Sigma = \text{Ptr}_\Sigma \cap \text{FOExp}_\Sigma$. Intuitively, the rank of a constructor is the exact number of arguments needed for building a data structure; the rank of a function symbol is the exact number of arguments needed for knowing how to evaluate the function call; patterns are nonevaluable expressions which represent (possibly H.O.) data; F.O. patterns represent data structures without functional components; F.O. expressions avoid H.O. variables and involve only exact curried applications.

Convention: For the rest of the paper, such expressions as "n-ary", "n arguments", etc. must be understood as referring to curried functions.

2.3 Continuous applicative algebras

We assume that the reader is familiar with the notion of Scott domain [14]. For the partial ordering of a given domain D we use the notation \sqsubseteq_D or simply \sqsubseteq if D is clear by the context.

A continuous applicative algebra (C.A.A.) of signature Σ is any algebraic structure \mathcal{A} consisting of a Scott domain $D_{\mathcal{A}}$ with ordering $\sqsubseteq_{\mathcal{A}}$ as carrier, a continuous binary operation $\alpha_{\mathcal{A}} \in [D_{\mathcal{A}} \times D_{\mathcal{A}} \rightarrow D_{\mathcal{A}}]$ (meant as interpretation of application), which is required to be strict w.r.t. its first argument, and interpretations $\phi_{\mathcal{A}} \in D_{\mathcal{A}}$ for all symbols $\phi \in DC_\Sigma \cup FS_\Sigma$. The notion is similar to the applicative structures used in combinatory logic [11].

Any $x \in D_{\mathcal{A}}$ induces n-ary continuous functions $\{x\}^{\mathcal{A}}_n$ (for all $n \in \mathbb{N}$) defined by