On Mints' Reduction for ccc-Calculus

Yohji Akama *

Department of Information Science, Tokyo Institute of Technology
Tokyo, 152, Japan (e-mail: akama@is.titech.ac.jp)

Abstract. In this paper, we present a divide-and-conquer lemma to infer the SN+CR (Strongly Normalization and Church-Rosser) property of a reduction system from that property of its subsystems. Then we apply the lemma to show the property of Mints' reduction for ccc-calculus with restricted η-expansion and restricted π-expansion. In the course of the proof, we obtain some relations of the two restricted expansions against traditional reductions. Among others, we get a simple characterization of the restricted η-expansion in terms of traditional β- and η-reductions, and a similar characterization for the restricted π-expansion.

1 Introduction

By ccc-calculus, we mean a deduction system for equations of typed λ-terms, essentially due to Lambek-Scott[9]. The types are generated from the type constant T and other atomic types by means of implication ($\varphi \supset \psi$) and product ($\varphi \times \psi$). We use $\varphi, \psi, \sigma, \tau, \ldots$ as meta-variables for types.

The terms of ccc-calculus are generated from the constant $*^T$ of type T and denumerable variables $x^\varphi, y^\varphi, z^\varphi, \ldots$ of each type φ by means of application $(u^\varphi v^\psi)^\psi$, abstraction $(\lambda x^\varphi. u^\psi)^\psi \varphi \psi$, left-projection $(lu^\varphi x^\psi)^\varphi$, right-projection $(ru^\varphi x^\psi)^\psi$, and pairing $(u^\varphi, v^\psi)^\varphi \times \psi$. We use $s^\varphi, t^\varphi, u^\varphi, v^\psi, \ldots$ as meta-variables for terms of each type φ.

This system is to deduce equations of the form $u^\varphi = v^\varphi$ and it consists of the usual equational axioms and rules(i.e., reflexive, symmetric, and transitive laws and substitution rules) and the following proper axioms:

\[
\begin{align*}
(\beta) & \ (\lambda x. u)v = u[x := v] \text{, where } [x := v] \text{ is a substitution;} \\
(l) & \ 1(u_1, u_r) = u_1; \\
(r) & \ r(u_1, u_r) = u_r; \\
(\eta) & \ \lambda x. xu = u \text{ if variable } x \text{ does not occur free in } u; \\
(\pi) & \ (lu, ru) = u; \\
(T) & \ u^T = *^T.
\end{align*}
\]

* Supported by JSPS Fellowship for Japanese Junior Scientists
2 In this paper, the type forming operator \supset is right associative. And the type-superscripts of terms are often omitted. The term forming operators l and r have higher precedences than the application operator. As usual, we denote α-congruence by \equiv. We refer to [1] as the standard text.
The proper axioms reflect the properties of cartesian closed category (CCC, for short), e.g. the axiom \((T)\) reflects the property of the terminal object.

In relation to its decision problems, coherence problem and the like, it is desirable to have a reduction system to generate the calculus which is both Church-Rosser and (weakly or strongly) normalizable.

A naive idea to get such a system is to read each proper axiom \((X)\) as a rewriting rule \(\rightarrow_X\) (to rewrite the left-hand side to the right-hand side where \(X = \beta, l, r, \eta, \pi\)) and \(\rightarrow_T\) (to rewrite \(u^T\) to \(s^T\) when \(u \neq s^T\)). But, unfortunately, the system so obtained is not Church-Rosser[9], although it is strongly normalizable.

So, Mints[10] introduced a new reduction system by replacing the rules \(\rightarrow_\eta\) and \(\rightarrow_\pi\) with a certain restriction of \(\eta\)-expansion (denoted by \(\rightarrow_\eta\)) and that of \(\pi\)-expansion (denoted by \(\rightarrow_\pi\)), respectively. Thus his reduction system consists of the basic reduction \(\rightarrow_B := \rightarrow_\beta \cup \rightarrow_l \cup \rightarrow_r\), the restricted expansion \(\rightarrow_E := \rightarrow_\eta \cup \rightarrow_\pi\), and the terminal reduction \(\rightarrow_T\). Then it is proved by Ćubrič[3] that the reduction \(\rightarrow_{BET} := \rightarrow_B \cup \rightarrow_E \cup \rightarrow_T\) is weakly normalizable and Church-Rosser. We call the reduction \(\rightarrow_{BET}\) Mints’ reduction.

In literature, the restricted \(\eta\)-expansion \(\rightarrow_\eta\) also arose from the study of program transformation. Hagiya[6] introduced the same notion \(\rightarrow_\eta\) independently in order to study \(\omega\)-order unification modulo \(\beta\eta\)-equality[7] in simply-typed \(\lambda\)-calculus. A weaker version of \(\rightarrow_\eta\) also appeared in Prawitz[11] in connection with proof theory.

The feature of \(\rightarrow_\eta\), in addition to the strong normalization property, is that a term in \(\rightarrow_\eta\)-normal form explicitly reflects the structure of its type. For example, if a term \(t := \lambda x_1 x_2 \ldots x_n. s\) is in \(\rightarrow_\eta\)-normal form then \(t \equiv x_1 x_2 \ldots x_n. s\).

The \(\rightarrow_{BE}\)-normal form is known as expanded normal form[11] in proof theory.

Thus, the reductions \(\rightarrow_\eta\) and \(\rightarrow_\pi\) are useful reductions in category theory, proof theory, and computer science. Nevertheless these reductions have not been fully investigated, because of their context-sensitiveness and non-substitutivity.

The main theorem of this paper is:

- Mints’ reduction \(\rightarrow_{BET}\) satisfies SN+CR property.

Based on the result, we also show that

- The reduction \(\rightarrow_\eta\) is exactly an \(\eta\)-expansion which is not \(\beta\)-expansion.
- The reduction \(\rightarrow_\pi\) is exactly a \(\pi\)-expansion which is not a finite series of \((\rightarrow_l \cup \rightarrow_r)\)-expansion.

Mints’ reduction \(\rightarrow_{BET}\) inherits the above mentioned annoying properties of the reduction \(\rightarrow_E := \rightarrow_\eta \cup \rightarrow_\pi\). In proving that \(\rightarrow_{BET}\) satisfies SN+CR property, to overcome the annoyance, we will use the divide-and-conquer technique: We separate the annoying part \(\rightarrow_E\) from the rest \(\rightarrow_{BT} := \rightarrow_B \cup \rightarrow_T\) in the reduction \(\rightarrow_{BET}\), and apply the following lemma with \(\rightarrow_R = \rightarrow_E\) and \(\rightarrow_S = \rightarrow_{BT}\):

Lemma. If two binary relations \(\rightarrow_R\) and \(\rightarrow_S\) on a set \(U(\neq \emptyset)\) have SN+CR property, then so does \(\rightarrow_{SR} := \rightarrow_S \cup \rightarrow_R\), provided that we have

\[
\forall u, v \in U \left(u \rightarrow_S v \iff u^R \not\rightarrow_S v^R \right),
\]